HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

Living skin substitutes: survival and function of fibroblasts seeded in a dermal substitute in experimental wounds.

Abstract
The healing of full-thickness skin defects requires extensive synthesis and remodeling of dermal and epidermal components. Fibroblasts play an important role in this process and are being incorporated in the latest generation of artificial dermal substitutes. We studied the fate of fibroblasts seeded in our artificial elastin/collagen dermal substitute and the influence of the seeded fibroblasts on cell migration and dermal substitute degradation after transplantation to experimental full-thickness wounds in pigs. Wounds were treated with either dermal substitutes seeded with autologous fibroblasts or acellular substitutes. Seeded fibroblasts, labeled with a PKH-26 fluorescent cell marker, were detected in the wounds with fluorescence microscopy and quantitated with flow cytofluorometric analysis of single-cell suspensions of wound tissue. The cellular infiltrate was characterized for the presence of mesenchymal cells (vimentin), monocytes/macrophages, and vascular cells. Dermal substitute degradation was quantitated by image analysis of wound sections stained with Herovici's staining. In the wounds treated with the seeded dermal substitute, fluorescent PKH-26-labeled cells were detectable up to 6 d and were positive for vimentin but not for the macrophage antibody. After 5 d, flow cytofluorometry showed the presence of 3.1 (+/-0.9) x 10(6) (mean +/- SD, n = 7) PKH-26-positive cells in these wounds, whereas initially only 1 x 10(6) fluorescent fibroblasts had been seeded. In total, the percentage of mesenchymal cells minus the macrophages was similar after 5 d between wounds treated with the seeded and the acellular substitutes. In the wounds treated with the seeded substitute, however, 19.5% of the mesenchymal cells were of seeded origin. Furthermore, the rate of substitute degradation in the seeded wounds was significantly lower at 2-4 wk after wounding than in wounds treated with the acellular substitute. Vascular in-growth and the number of infiltrated macrophages were not different. In conclusion, cultured dermal fibroblasts seeded in an artificial dermal substitute and transplanted onto full-thickness wounds in pigs survived and proliferated. The observed effects of seeded fibroblasts on dermal regeneration appeared to be mediated by reducing subcutaneous fibroblastic cell migration and/or proliferation into the wounds without impairing migration of monocytes/macrophages and endothelial cells. Moreover, the degradation of the implanted dermal substitute was retarded, indicating a protective activity of the seeded fibroblasts.
AuthorsE N Lamme, R T van Leeuwen, A Jonker, J van Marle, E Middelkoop
JournalThe Journal of investigative dermatology (J Invest Dermatol) Vol. 111 Issue 6 Pg. 989-95 (Dec 1998) ISSN: 0022-202X [Print] United States
PMID9856806 (Publication Type: Journal Article)
Chemical References
  • Coloring Agents
Topics
  • Animals
  • Cell Survival (physiology)
  • Coloring Agents
  • Disease Models, Animal
  • Extracellular Matrix (metabolism)
  • Fibroblasts (cytology, physiology)
  • Fluorescence
  • Regeneration
  • Skin Physiological Phenomena
  • Skin, Artificial
  • Swine
  • Wounds and Injuries (physiopathology)

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: