HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

Posttreatment with eicosatetraynoic acid decreases lung edema in guinea pigs exposed to phosgene: the role of leukotrienes.

Abstract
Acetylenic acids such as 5,8,11,14-eicosatetraynoic acid (ETYA), have been shown to be effective in preventing pulmonary edema formation (PEF). In phosgene-exposed guinea pigs, we examined the effects of ETYA on PEF, measured as real time lung weight gain (lwg). Pulmonary artery pressure (Ppa), airway pressure (Paw), perfusate leukotrienes (LT) C4/D4/E4/B4, and lung tissue lipid peroxidation (TBARS) were measured using the isolated, buffer-perfused lung model. Guinea pigs were challenged to 175 mg/m3 (44 ppm) phosgene for 10 minutes giving a concentration x time product of 1750 mg.min/m3 (437 ppm.min). Five minutes after removal from the exposure chamber, guinea pigs were treated, i.p., with 200 microL of 100 microM ETYA. 200 microL of 50 microM ETYA was added to the perfusate every 40 minutes, beginning at 60 minutes after start of exposure (t = 0). There were four groups in this study: air-treated, phosgene-exposed, ETYA-posttreated + phosgene, and ETYA-posttreated + air ETYA-posttreated + phosgene guinea pigs had significantly lower Ppa (P = .006), Paw (P = .009), and lwg (P = .016) compared with phosgene-exposed animals. Phosgene exposure reduced LTB4 compared with air-treated controls (P = .09). ETYA-posttreatment + phosgene had significantly increased perfusate LTB4 (P = .0006) compared with phosgene exposure only group. Total perfusate, LTC4 + LTD4 + LTE4, was not different between phosgene-exposed, air-treated or ETYA-posttreatment + phosgene over time. Posttreatment with ETYA significantly lowered TBARS formation, 206 +/- 13 versus 285 +/- 23 nmol/mg protein (P = .016), compared with phosgene-exposed lungs. Paradoxically, ETYA posttreatment decreased PEF and lipid peroxidation, but increased sulfidopeptide LT release from the lung during perfusion. We conclude that LTC4/D4/E4, and B4, may play different roles than previously thought for PEF in the isolated perfused lung model.
AuthorsA M Sciuto, R R Stotts
JournalExperimental lung research (Exp Lung Res) 1998 May-Jun Vol. 24 Issue 3 Pg. 273-92 ISSN: 0190-2148 [Print] England
PMID9635251 (Publication Type: Journal Article)
Chemical References
  • Leukotrienes
  • Thiobarbituric Acid Reactive Substances
  • Phosgene
  • 5,8,11,14-Eicosatetraynoic Acid
Topics
  • 5,8,11,14-Eicosatetraynoic Acid (pharmacology)
  • Airway Resistance (drug effects)
  • Animals
  • Blood Pressure (drug effects)
  • Guinea Pigs
  • In Vitro Techniques
  • Leukotrienes (metabolism)
  • Lipid Peroxidation (drug effects)
  • Lung (drug effects, metabolism)
  • Male
  • Organ Size
  • Perfusion
  • Phosgene (toxicity)
  • Pulmonary Artery (drug effects, physiology)
  • Pulmonary Edema (chemically induced, metabolism, prevention & control)
  • Thiobarbituric Acid Reactive Substances (metabolism)

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: