HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

The effect of FMRFamide analogs on [35S]GTP-gamma-S stimulation in squid optic lobes.

Abstract
Pharmacological study of Phe-Met-Leu-Phe-amide (FMRFa) receptors is hindered by the lack of selective ligands. The classification of these selective ligands is further hampered by the limited availability of functional assays. In this study, we evaluated several synthetic FMRFa analogs for agonist and antagonist activity by measuring their abilities to produce [35-S]-GTP-gamma-S stimulation or to inhibit FMRFa-induced [35S]-GTP-gamma-S binding in squid optic lobes. Analogs included acetyl-Phe-norLeu-Arg-Phe-amide (acFnLRFa), desamino-Tyr-Phe-Leu-Arg-amide (daYFLRa), desamino Tyr-Phe-norLeu-Arg-Phe-amide (daYFnLRFa), desamino Tyr-Phe-norLeu-Arg-[TIC]-amide (daYFnLR[TIC]a), desamino Tyr-Trp-norLeu-Arg-amide (daYWnLRa), (D)-Tyr-Phe-norLeu-Arg-Phe-amide (D)-YFnLRFa), Phe-Leu-Arg-Phe-amide (FLRFa), and the D-amino acid analogs of FMRFa (D-FMRFa, F-(D)-MRFa and FM-(D)-RFa). For agonist studies, full dose-response curves were generated and analyzed for potency and efficacy (maximal percent effect). FMRFamide as well as analogs ac-FnLRFa, daYFnLRFa, daYFnLR[TIC]a, D-YFnLRFa, FLRFa, and (D)-FMRFa stimulated [35S]-GTP-gamma-S binding. Analogs daYWnLRa, daYFLRa, F-(D)-MRFa, and FM-(D)-RFa failed to stimulate either [35S]-GTP-gamma-S binding or to inhibit FMRFa-induced [35S]-GTP-gamma-S binding. The rank order of potency was daYFnLRFa > or = daYFnLRF[TIC]a > acFnLRFa > (D)YFnLRFa > FLRFa > or = FMRFa >> (D)-FMRFa. The order of efficacy was daYFnLRFa = acFnLRFa = (D)-YFnLRFa > FLRFa = FMRFa > or = (D)-FMRFa > or = daYFnLRF[TIC]a. Peptide analog daYFnLR[TIC]a was less efficacious (59% maximal stimulation) than analogs daYFnLRFa, acFnLRFa, and (D)-YFnLRFa (113-146% maximal stimulation). A maximal concentration of daYFnLR[TIC]a (10 microM) reduced daYFnLRFa, acFnLRFa, and (D)-YFnLRFa induced [35S]-GTP-gamma-S stimulation, indicating that daYFnLR[TIC]a is a partial agonist at the receptor stimulated by the FMRFamide analogs. Analysis of the structural requirements needed for promoting [35S]-GTP-gamma-S binding show that elongation (i.e., daYFnLRFa, D-YFnLRFa) or modification of Phe1 (ac-FnLRFa) leads to increased efficacy and potency. Moreover, elimination of the C-terminal Phe (daYWnLRa, daYFLRa,) leads to a loss of biological activity. However, substitution with L-1,2,3,4 tetrahydroisoquinoline-3-carboxylic acid, a rigid analog of the C-terminal Phe (daYFnLR[TIC]a), leads to decreased efficacy but not loss of potency. The data suggest that immobilization or modification of the C-terminal Phe may produce highly selective and potent FMRFamide antagonists. These results agree with published receptor radioligand studies and indicate that the [35S]GTP-gamma-S assay may be useful in classifying novel FMRFamide-selective ligands.
AuthorsS O Heyliger, K Payza, R B Rothman
JournalPeptides (Peptides) Vol. 19 Issue 4 Pg. 739-47 ( 1998) ISSN: 0196-9781 [Print] United States
PMID9622030 (Publication Type: Comparative Study, Journal Article)
Chemical References
  • FMRFamide receptor
  • Oligopeptides
  • Receptors, Invertebrate Peptide
  • desamino-tyrosyl-phenylalanyl-norleucyl-arginyl-phenylalaninamide
  • Guanosine 5'-O-(3-Thiotriphosphate)
  • FMRFamide
  • phenylalanyl-leucyl-arginyl phenylalaninamide
Topics
  • Animals
  • Decapodiformes
  • Drug Evaluation, Preclinical (methods)
  • FMRFamide (analogs & derivatives, metabolism)
  • Guanosine 5'-O-(3-Thiotriphosphate) (metabolism)
  • Membranes (metabolism)
  • Oligopeptides (metabolism)
  • Optic Lobe, Nonmammalian (metabolism)
  • Radioligand Assay
  • Receptors, Invertebrate Peptide (agonists, antagonists & inhibitors)
  • Subcellular Fractions (metabolism)

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: