HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

Hypothalamic and hypophyseal regulation of growth hormone secretion.

Abstract
1. Regulation of pulsatile secretion of growth hormone (GH) relies on hypothalamic neuronal loops, major transmitters involved in their operation are growth hormone releasing hormone (GHRH) synthetized mostly in arcuate nucleus (ARC) neurons, and somatostatin (SRIH), synthetized both in hypothalamus periventricular (PVe) and ARC neurons. 2. Neurons synthetizing both peptides can inhibit each other in a reciprocal manner. Other neuropeptides synthetized in ARC neurons, such as galanin, or in ARC interneurons, such as neuropeptide Y (NPY), are able to modulate synthesis and release of GHRH and SRIH into the hypothalamohypophyseal portal system. 3. In addition, the hitherto uncharacterized endogenous ligand of the recently cloned growth hormone releasing peptide receptor, expressed mostly in the ARC, triggers GH release, presumably by actions on ARC interneurons. 4. Thyroid, gonadal, and adrenal steroid hormones also affect the GHRH-SRIH balance; a differential distribution of sex steroid receptors in the ARC and the PVe is likely to account for the different pattern of GH secretion in male and female animals. 5. Growth hormone itself is able to inhibit the amplitude of GH secretory episodes and to increase their frequency, by entering the brain (presumably by receptor-mediated internalization at the level of the choroid plexus) and acting subsequently on ARC neurons. 6. At the pituitary level, major neurotransmitters regulating GH cells act on receptors of the VIP/PACAP/GHRH family and of the somatostatin family, in particular, sst2 and sst3. Those are coupled to accumulation of cAMP as a second messenger. 7. In addition, patch-clamp experiments and measurement of intracellular Ca2+ indicate that GH cells present characteristic, GHRH-dependent, but self-maintained Ca2+ spikes and [Ca2+]i transients, which reflect adaptive mechanisms to constraints of episodic release. 8. Recent data on transcription factors affecting GH gene expression and somatotrope differentiation are also summarized. 9. Regulation and differentiation of somatotropes also depend upon paracrine processes within the pituitary itself and involve growth factors and several neuropeptides, for instance, vasoactive intestinal peptide, angiotensin 2, endothelin, and activin. 10. Finally, characteristic changes occur in the GH secretory pattern under discrete, pathological conditions, such as abnormal growth and dwarfism, diabetes, and acromegaly, as well as during inflammatory processes.
AuthorsM T Bluet-Pajot, J Epelbaum, D Gourdji, C Hammond, C Kordon
JournalCellular and molecular neurobiology (Cell Mol Neurobiol) Vol. 18 Issue 1 Pg. 101-23 (Feb 1998) ISSN: 0272-4340 [Print] United States
PMID9524732 (Publication Type: Journal Article, Review)
Chemical References
  • Growth Hormone
Topics
  • Animals
  • Growth Hormone (metabolism)
  • Humans
  • Hypothalamo-Hypophyseal System (physiology)

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: