HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

Dynorphin and epilepsy.

Abstract
Studies on dynorphin involvement in epilepsy are summarised in this review. Electrophysiological, biochemical and pharmacological data support the hypothesis that dynorphin is implicated in specific types of seizures. There is clear evidence that this is true for complex partial (limbic) seizures, i.e. those characteristic of temporal lobe epilepsy, because; (1) dynorphin is highly expressed in various parts of the limbic system, and particularly in the granule cells of the hippocampus; (2) dynorphin appears to be released in the hippocampus (and in other brain areas) during complex partial seizures; (3) released dynorphin inhibits excitatory neurotransmission at multiple synapses in the hippocampus via activation of kappa opioid receptors; (4) kappa opioid receptor agonists are highly effective against limbic seizures. Data on generalised tonic-clonic seizures are less straightforward. Dynorphin release appears to occur after ECS seizures and kappa agonists exert a clear anticonvulsant effect in this model. However, more uncertain biochemical data and lack of efficacy of kappa agonists in other generalised tonic-clonic seizure models argue that the involvement of dynorphin in this seizure type may not be paramount. Finally, an involvement of dynorphin in generalised absence seizures appears unlikely on the basis of available data. This may not be surprising, given the presumed origin of absence seizures in alterations of the thalamo-cortical circuit and the low representation of dynorphin in the thalamus. In conclusion, it may be suggested that dynorphin plays a role as an endogenous anticonvulsant in complex partial seizures and in some cases of tonic-clonic seizures, but most likely not in generalised absence. This pattern of effects may coincide with the antiseizure spectrum of selective kappa agonists.
AuthorsM Simonato, P Romualdi
JournalProgress in neurobiology (Prog Neurobiol) Vol. 50 Issue 5-6 Pg. 557-83 (Dec 1996) ISSN: 0301-0082 [Print] England
PMID9015827 (Publication Type: Journal Article, Research Support, Non-U.S. Gov't, Review)
Chemical References
  • Anticonvulsants
  • Dynorphins
Topics
  • Animals
  • Anticonvulsants (pharmacology, therapeutic use)
  • Dynorphins (physiology)
  • Epilepsy (drug therapy, physiopathology)
  • Humans
  • Temporal Lobe (drug effects, physiology)

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: