HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

Liver-specific enhancer of the glucokinase gene.

Abstract
Glucokinase gene regions that are important for liver specific expression of the enzyme have been functionally identified using transient transfection of rat hepatocytes. Maximal luciferase activity was elicited by a reporter plasmid with 3.4 kilobase pairs of genomic DNA flanking the liver glucokinase promoter. Deletion of a gene fragment between -1000 and -600 with respect to the start of transcription resulted in a 60% decrease in luciferase activity. Further reduction, close to background level, occurred upon deletion of a 90-base pair sequence between -123 and -34. Reporter plasmids with the liver glucokinase promoter and any length of flanking sequence were minimally active in INS-1 insulinoma cells, and conversely reporters with the beta-cell-specific promoter were ineffective in primary hepatocytes. In FTO-2B hepatoma cells, a differentiated line expressing many liver-specific traits but not the endogenous glucokinase gene, the promoter proximal region between -123 and -34 markedly stimulated the expression of transfected plasmids above background. However, addition of the flanking region up to -1000 inhibited luciferase expression. The gene fragment from -1003 to -707 was shown to be a bona fide, hepatocyte-specific enhancer by the following criteria: 1) it stimulated reporter expression by more than 10- and 5-fold when inserted directly upstream of the glucokinase TATA box or complete promoter, respectively, regardless of orientation; 2) it stimulated gene expression from the heterologous SV 40 promoter 4-fold; 3) it was also effective from a downstream position; and 4) in contrast to the enhancer effect in primary hepatocytes, the sequence acted as a silencer in FTO-2B cells and was neutral in INS-1 cells. Both the promoter proximal and the enhancer regions were marked by DNase I hypersensitive sites in the chromatin of primary hepatocytes but not hepatoma or insulinoma cells. Seven footprinted elements termed A through G were mapped in the enhancer by the in vitro DNase I protection assay. Elements A-C may bind liver enriched factors, because they were not protected by spleen nuclear extract. In hepatocyte transfection, the downstream half of the enhancer containing elements A-C was about half as effective as the complete enhancer in stimulating glucokinase promoter activity. Site-directed mutagenesis of element A virtually abrogated the activity of the half-enhancer, whereas mutation of element C had a more moderate effect. The sequence between -732 and -578 upstream of the liver start of transcription in the human glucokinase gene displays 79% sequence identity with the downstream half of the rat enhancer. The human gene fragment ligated to the minimal rat liver glucokinase promoter was shown to work as an enhancer in the hepatocyte transfection system.
AuthorsP B Iynedjian, S Marie, H Wang, A Gjinovci, K Nazaryan
JournalThe Journal of biological chemistry (J Biol Chem) Vol. 271 Issue 46 Pg. 29113-20 (Nov 15 1996) ISSN: 0021-9258 [Print] United States
PMID8910567 (Publication Type: Journal Article)
Chemical References
  • Glucokinase
Topics
  • Animals
  • Cells, Cultured
  • DNA Footprinting
  • Enhancer Elements, Genetic
  • Gene Expression Regulation, Enzymologic
  • Glucokinase (genetics)
  • Humans
  • Liver (enzymology)
  • Male
  • Mutagenesis, Site-Directed
  • Promoter Regions, Genetic
  • Rats
  • Rats, Wistar
  • Sequence Deletion
  • Sequence Homology, Nucleic Acid
  • Tumor Cells, Cultured

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: