HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

Crucial role of intracellular effectors on glycogenolysis in the isolated rat heart: potential consequences on the myocardial tolerance to ischemia.

Abstract
The role played by glycogenolysis in the ischemic heart has been recently put into question because it is suspected that a slowing down of this process could be beneficial for the tolerance of the myocardium to ischemia. The role of the intracellular effectors that control the rate of glycogenolysis has therefore regained interest. We aimed to understand the role played by those intracellular effectors which are directly related to the energy balance of the heart. To this end, we review some of the previously published data on this subject and we present new data obtained from P-31 and C-13 NMR spectroscopic measurement on isolated rat heart. Two conditions of ischemia were studied: 15 min global no-flow and 25 min low-flow ischemia. The hearts were isolated either from control animals or from rats pre-treated with isoproterenol (5 mg.kg-1 b.w. i.p.) 1 h before the perfusion in order to C-13 label glycogen stores. Our main results are as follows: (1) the biochemically determined glycogenolysis rate during the early phase of ischemia (up to 10-15 min) was larger in no-flow ischemia than in low-flow conditions for both groups, (2) direct measurement of the glycogenolysis rate, as determined by C-13 NMR, after labelling of the glycogen pool in the hearts from isoproterenol-treated rats, confirms the estimations from the biochemical data, (3) glycogenolysis was slower in the hearts from pre-treated animals than in control hearts for both conditions of ischemia, (4) the total activity of glycogen phosphorylase (a + b) increased, by 50%, after 5 min no-flow ischemia, whereas it decreased by 42% after the same time of low-flow ischemia. However, the ratio phosphorylase a/a + b was not altered, whatever the conditions, (5) the concentration of inorganic phosphate (Pi) increased sharply during the first minutes of ischemia, to values above 8-10 mM, under all conditions studied. The rate of increase was larger during no-flow ischemia than during low-flow ischemia. The concentration of Pi was thereafter higher in controls than in the hearts from isoproterenol-treated animals. The calculated cytosolic concentration of free 5'AMP increased sharply at the onset on ischemia, reaching in a few minutes values above 30 microM in controls and significantly lower values around 15 microM, in the hearts from isoproterenol-treated rats. (6) The hearts from isoproterenol-treated rats displayed a reduced intracellular acidosis, when compared to controls, under both conditions of ischemia. We conclude that the intracellular effectors, mainly free AMP, play an essential role in the control of glycogenolysis via allosteric control of phosphorylase b activity. The alteration in the concentration of free Pi, the substrate of both forms of phosphorylase, can be considered as determinant in the control of the rate of glycogenolysis. The attenuation of ischemia-induced intracellular acidosis in the hearts from isoproterenol-treated rats could be a consequence of a reduced glycogenolytic rate and is likely to be related to a better resumption of the mechanical function on reperfusion.
AuthorsN Lavanchy, S Grably, A Garnier, A Rossi
JournalMolecular and cellular biochemistry (Mol Cell Biochem) 1996 Jul-Aug Vol. 160-161 Pg. 273-82 ISSN: 0300-8177 [Print] Netherlands
PMID8901483 (Publication Type: Journal Article)
Chemical References
  • Phosphates
  • Adenosine Triphosphate
  • Glycogen
  • Phosphorylases
Topics
  • Adenosine Triphosphate (metabolism)
  • Animals
  • Cytosol (metabolism)
  • Female
  • Glycogen (metabolism)
  • Hydrogen-Ion Concentration
  • Kinetics
  • Magnetic Resonance Spectroscopy
  • Myocardial Ischemia (metabolism)
  • Myocardium (metabolism)
  • Phosphates (metabolism)
  • Phosphorylases (metabolism)
  • Rats
  • Rats, Wistar

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: