HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

Hepatic biotransformation in rodents and physicochemical properties of 23(R)-hydroxychenodeoxycholic acid, a natural alpha-hydroxy bile acid.

Abstract
The hepatic biotransformation in the rat and hamster of 23(R)-hydroxychenodeoxycholic acid (23(R)OH-CDCA), the alpha-hydroxy derivative of CDCA, was defined; some physiological and physicochemical properties were also assessed. 23(R)OH-CDCA was isolated from duck bile; [24-14C]23(R)OH-CDCA was synthesized. The compound was administered intravenously to anesthetized biliary fistula rats at doses of 1, 3, or 5 mu mol/kg-min and to hamsters at 3 mu mol/min-kg. Biliary bile acids and radioactivity were analyzed by thin-layer chromatography (TLC), high pressure liquid chromatography (HPLC), and gas chromatography-mass spectrometry (GC-MS). Recovery of radioactivity in bile was incomplete (50-70% of infused dose); some was also recovered as breath 14CO2. Radioactivity in bile was present as unchanged compound (25-50%, dose-dependent) and its conjugates (with taurine, with glycine, or with glucuronate). Nor-CDCA (C23) was present in bile (in both unconjugated and conjugated form), indicating that 23(R)OH-CDCA had undergone oxidative decarboxylation (alpha-oxidation) with loss of the C-24 carboxyl group. The alpha-oxidation was 20 +/- 5% (mean +/- SD) of administered dose in the rat and was not dose-dependent; in hamsters, alpha-oxidation was 35 +/- 8%. In rats, the S isomer of 23OH-CDCA also underwent alpha-oxidation (10 +/- 2%). Nor-CDCA also underwent 6beta-hydroxylation to form nor-alpha-muricholic acid, as well as reduction of its C-23 carboxyl group to form the C23 alcohol. The taurine conjugate of 23(R)OH-CDCA [23(R)OH-CDC-tau] was prepared synthetically and characterized by 1H-NMR. By surface tension measurements, it had a critical micellization concentration (CMC) of 3.5 mM (in 0.15 M Na+), as compared to 1.8 mM for CDC-taurine. Aqueous solubility of 23(R)OH-CDCA increased markedly above pH 5, compared to pH 7 for CDCA. When incubated with cholylglycine hydrolase, 23(R)OH-CDC-tau was deconjugated at a rate one-fourth that of CDC-tau. It is concluded that the presence of a 23(R)-hydroxyl group in a 3alpha, 7alpha-dihydroxy bile acid alters its metabolism in the rodent hepatocyte, as evidenced by inefficient conjugation with taurine or glycine, alpha-oxidation to nor (C23) bile acid, and reduction of the nor bile acid to the primary alcohol. The taurine conjugate of 23(R)OH-CDCA, a major biliary bile acid of marine mammals and wading birds, is a biological detergent with properties superior to those of the taurine conjugate of CDCA. Natural C23 nor-bile acids may be formed by alpha-oxidation of alpha-hydroxy C24 bile acids.
AuthorsJ R Merrill, C D Schteingart, L R Hagey, Y Peng, H T Ton-Nu, E Frick, M Jirsa, A F Hofmann
JournalJournal of lipid research (J Lipid Res) Vol. 37 Issue 1 Pg. 98-112 (Jan 1996) ISSN: 0022-2275 [Print] United States
PMID8820106 (Publication Type: Journal Article, Research Support, Non-U.S. Gov't, Research Support, U.S. Gov't, P.H.S.)
Chemical References
  • 23-hydroxychenodeoxycholic acid
  • Chenodeoxycholic Acid
Topics
  • Animals
  • Bile (chemistry, metabolism)
  • Biological Transport
  • Biotransformation
  • Breath Tests
  • Chenodeoxycholic Acid (analogs & derivatives, chemistry, metabolism)
  • Cricetinae
  • Ducks
  • Liver (metabolism)
  • Male
  • Mesocricetus
  • Oxidation-Reduction
  • Rats
  • Rats, Sprague-Dawley
  • Stereoisomerism

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: