HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

Ramiprilat attenuates hypoxia/reoxygenation injury to cardiac myocytes via a bradykinin-dependent mechanism.

Abstract
Isolated rat neonatal cardiac myocytes were subjected to immersion in hypoxic (PO2 < 2 mm Hg), glucose-free Tyrode's solution for 5 h followed by concomitant reoxygenation and staining with the membrane-impermeant fluorophore, propidium iodide, in normoxic (PO2 > 150 mm Hg), serum-free culture media for 15 min in order to assess sarcolemmal damage indicative of myocyte viability due to hypoxia/reoxygenation injury. Prior to hypoxic exposure, cells were pretreated for 90 min with the angiotensin-converting enzyme inhibitor cyclopenta[b]pyrrole-2-carboxylic acid, 1-[2-[(1-carboxy-3-phenylpropyl)amino]-l-oxopropyl]octahydro-[2S-[1[R* (R*)]2 alpha, 3a beta, 6a beta]] (ramiprilat), concomitantly with ramiprilat and H-D-Arg-Arg-Pro-Hyp-Gly-Thi-Ser-D-Tic-Oic-Arg-OH (bradykinin B2 receptor antagonist HOE 140), the bioactive peptide Arg-Pro-Pro-Gly-Phe-Ser-Pro-Phe-Arg (bradykinin) or concomitantly with bradykinin and HOE 140. Hypoxia/reoxygenation injury to untreated control cardiac myocytes was characterized by a significant loss of sarcolemmal integrity measured at 75 +/- 4% of total cell fluorescence (mean +/- S.E., n = 42 cultures). Compared to propidium iodide staining of the above untreated control myocytes, those pretreated with 30 or 100 microM ramiprilat showed a significant reduction of propidium iodide staining to 45 +/- 9% and 40 +/- 8% (n = 9, P < 0.05) of untreated controls, respectively. Pretreatment with the protective concentrations of ramiprilat concomitant with 10 microM HOE 140 abolished the significant reduction in propidium iodide staining observed with ramiprilat alone. Similarly, pretreatment with 10 or 100 nM bradykinin significantly reduced propidium iodide staining to 35 +/- 5% and 60 +/- 10% (n = 6, P < 0.05) of the untreated hypoxic controls, respectively. In addition, concomitant pretreatment with protective concentrations of bradykinin and 10 microM HOE 140 also abolished the significant reduction in propidium iodide staining observed with bradykinin alone. The results indicate that the angiotensin-converting enzyme inhibitor ramiprilat has a protective effect on isolated cardiac myocytes exposed to hypoxia/reoxygenation and that this effect is most likely related to a local action of bradykinin on the cardiac myocyte via the activation of the kinin B2 receptor.
AuthorsT M Wall, D A Linseman, J C Hartman
JournalEuropean journal of pharmacology (Eur J Pharmacol) Vol. 306 Issue 1-3 Pg. 165-74 (Jun 13 1996) ISSN: 0014-2999 [Print] Netherlands
PMID8813629 (Publication Type: Journal Article)
Chemical References
  • Angiotensin-Converting Enzyme Inhibitors
  • Bradykinin Receptor Antagonists
  • Coloring Agents
  • Propidium
  • ramiprilat
  • icatibant
  • Ramipril
  • Bradykinin
Topics
  • Analysis of Variance
  • Angiotensin-Converting Enzyme Inhibitors (pharmacology)
  • Animals
  • Bradykinin (analogs & derivatives, pharmacology)
  • Bradykinin Receptor Antagonists
  • Coloring Agents (pharmacology)
  • Disease Models, Animal
  • Myocardial Reperfusion Injury (prevention & control)
  • Propidium (pharmacology)
  • Ramipril (analogs & derivatives, pharmacology)
  • Rats
  • Rats, Sprague-Dawley

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: