HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

Deciphering the biosynthetic origin of the aglycone of the aureolic acid group of anti-tumor agents.

AbstractBACKGROUND:
Mithramycin, chromomycin, and olivomycin belong to the aureolic acid family of clinically important anti-tumor agents. These natural products share a common aromatic aglycone. Although isotope labeling studies have firmly established the polyketide origin of this aglycone, they do not distinguish between alternative biosynthetic models in which the aglycone is derived from one, two or three distinct polyketide moieties. We set out to determine the biosynthetic origin of this moiety using a recombinant approach in which the ketosynthase and chain-length factor proteins from the antibiotic-producer strain, which determine the chain length of a polyketide, are produced in a heterologous bacterial host.
RESULTS:
The ketosynthase and chain-length factor genes from the polyketide synthase gene cluster from the mithramycin producer, Streptomyces argillaceus ATCC 12956, and the acyl carrier protein and ketoreductase genes from the actinorhodin polyketide synthase were expressed in Streptomyces coelicolor CH999. The recombinant strain produced a 20-carbon polyketide, comprising the complete backbone of the aglycone of mithramycin.
CONCLUSIONS:
The aglycone moieties of mithramycin, chromomycin, and olivomycin are derived from a single polyketide backbone. The nascent polyketide backbone must undergo a series of regiospecific cyclizations to form a tetracenomycin-like tetracyclic intermediate. The final steps in the aglycone biosynthetic pathway presumably involve decarboxylation and oxidative cleavage between C-18 and C-19, followed by additional oxidation, reduction, and methylation reactions.
AuthorsG Blanco, H Fu, C Mendez, C Khosla, J A Salas
JournalChemistry & biology (Chem Biol) Vol. 3 Issue 3 Pg. 193-6 (Mar 1996) ISSN: 1074-5521 [Print] United States
PMID8807845 (Publication Type: Journal Article, Research Support, Non-U.S. Gov't, Research Support, U.S. Gov't, Non-P.H.S.)
Chemical References
  • Antibiotics, Antineoplastic
  • Plicamycin
Topics
  • Antibiotics, Antineoplastic (chemistry)
  • Magnetic Resonance Spectroscopy
  • Plicamycin (chemistry)

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: