HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

Potent inhibition of human immunodeficiency virus by MDL 101028, a novel sulphonic acid polymer.

Abstract
MDL 101028, a novel biphenyl disulphonic acid urea co-polymer was designed and synthesised as a heparin mimetic. This low molecular weight polymer showed potent inhibition of human immunodeficiency virus type 1 (HIV-1) replication in a number of host-cell/virus systems, including primary clinical isolates of the virus cultured in human peripheral blood mononuclear cells (PBMCs). When compared with the heterogeneous polysulphated molecules, heparin and dextran sulphate, this chemically defined compound showed equivalent antiviral activity with 50% inhibitory concentrations (IC50s) in the range 0.27-3.0 micrograms/ml in the host-cell/virus systems tested. MDL 101028 also inhibited the replication of HIV type 2 and the simian immunodeficiency virus (SIV), as well as HIV-1 variants resistant to reverse transcriptase inhibitors. Virus growth was blocked when exposure of T-lymphocytes to MDL 101028 was restricted to the virus absorption stage, or even in whole blood conditions. MDL 101028 did not irreversibly inactivate virions, and in contrast to heparin, did not inhibit the attachment of radiolabelled HIV-1 to CD4+ T-cells. MDL 101028 blocked HIV-induced cell-to-cell fusion and this activity appears to explain the mechanism of its antiviral action. The antiviral evaluation of discrete oligomer molecules of MDL 101028 showed that a polymer chain length of six repeating units had optimal potency. The lack of anticoagulant properties and significant antiviral activity in whole blood may allow the development of MDL 101028 as a treatment of HIV infections.
AuthorsD L Taylor, T M Brennan, C G Bridges, M J Mullins, A S Tyms, R Jackson, A D Cardin
JournalAntiviral research (Antiviral Res) Vol. 28 Issue 2 Pg. 159-73 (Oct 1995) ISSN: 0166-3542 [Print] Netherlands
PMID8585769 (Publication Type: Journal Article)
Chemical References
  • Antiviral Agents
  • Biphenyl Compounds
  • Cytotoxins
  • MDL 101028
  • Polymers
  • Sulfonic Acids
Topics
  • Animals
  • Antiviral Agents (pharmacology)
  • Biphenyl Compounds (pharmacology, toxicity)
  • Cell Line
  • Cytotoxins (pharmacology, toxicity)
  • HIV-1 (drug effects, metabolism)
  • HIV-2 (drug effects)
  • Humans
  • Polymers (pharmacology)
  • Simian Immunodeficiency Virus (drug effects)
  • Structure-Activity Relationship
  • Sulfonic Acids (pharmacology)

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: