HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

Anaerobiosis and plant growth hormones induce two genes encoding 1-aminocyclopropane-1-carboxylate synthase in rice (Oryza sativa L.).

Abstract
The plant hormone ethylene is believed to be responsible for the ability of rice to grow in the deepwater regions of Southeast Asia. Ethylene production is induced by hypoxia, which is caused by flooding, because of enhanced activity of 1-aminocyclopropane-1-carboxylic acid (ACC) synthase, the key enzyme in the ethylene biosynthetic pathway. We have cloned three divergent members, (OS-ACS1, OS-ACS2, and OS-ACS3), of a multigene family encoding ACC synthase in rice. OS-ACS1 resides on chromosome 3 and OS-ACS3 on chromosome 5 in the rice genome. The OS-ACS1 and OS-ACS3 genes are induced by anaerobiosis and indoleacetic acid (IAA) + benzyladenine (BA) + LiCl treatment. The anaerobic induction is differential and tissue specific; OS-ACS1 is induced in the shoots, whereas OS-ACS3 is induced in the roots. These inductions are insensitive to protein synthesis inhibitors, suggesting that they are primary responses to the inducers. All three genes are actually induced when protein synthesis is inhibited, indicating that they may be under negative control or that their mRNAs are unstable. The OS-ACS1 gene was structurally characterized, and the function of its encoded protein (M(r) = 53 112 Da, pI 8.2) was confirmed by expression experiments in Escherichia coli. The protein contains all eleven invariant amino acid residues that are conserved between aminotransferases and ACC synthases cloned from various dicotyledonous plants. The amino acid sequence shares significant identity to other ACC synthases (69-34%) and is more similar to sequences in other plant species (69% with the tomato LE-ACS3) than to other rice ACC synthases (50-44%). The data suggest that the extraordinary degree of divergence among ACC synthase isoenzymes within each species arose early in plant evolution and before the divergence of monocotyledonous and dicotyledonous plants.
AuthorsT I Zarembinski, A Theologis
JournalMolecular biology of the cell (Mol Biol Cell) Vol. 4 Issue 4 Pg. 363-73 (Apr 1993) ISSN: 1059-1524 [Print] United States
PMID8389618 (Publication Type: Journal Article, Research Support, U.S. Gov't, Non-P.H.S., Research Support, U.S. Gov't, P.H.S.)
Chemical References
  • Benzyl Compounds
  • Chlorides
  • Indoleacetic Acids
  • Plant Growth Regulators
  • Purines
  • indoleacetic acid
  • Cycloheximide
  • Lithium
  • Lyases
  • 1-aminocyclopropanecarboxylate synthase
  • Lithium Chloride
  • Adenine
  • benzylaminopurine
  • Kinetin
Topics
  • Adenine (analogs & derivatives, pharmacology)
  • Amino Acid Sequence
  • Anaerobiosis
  • Base Sequence
  • Benzyl Compounds
  • Chlorides (pharmacology)
  • Cycloheximide (pharmacology)
  • Gene Expression Regulation
  • Genomic Library
  • Indoleacetic Acids (pharmacology)
  • Kinetin
  • Lithium (pharmacology)
  • Lithium Chloride
  • Lyases (biosynthesis, genetics)
  • Molecular Sequence Data
  • Multigene Family
  • Nucleic Acid Hybridization
  • Oryza (enzymology, genetics)
  • Plant Growth Regulators (pharmacology)
  • Polymerase Chain Reaction
  • Purines
  • Transcription, Genetic

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: