HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

Increased monoamine oxidase B activity in plaque-associated astrocytes of Alzheimer brains revealed by quantitative enzyme radioautography.

Abstract
The aetiology and pathogenesis of Alzheimer's disease are currently poorly understood, but symptomatic disease is associated with amyloid plaques, neurofibrillary tangles, neuronal loss and numerous alterations of neurotransmitter systems in the CNS. Monoamine oxidase type B is known to be increased in Alzheimer diseased brains. The distribution and abundance of catalytic sites for monoamine oxidases A and B in post mortem human brains of 11 Alzheimer disease cases and five age-matched controls were investigated by quantitative enzyme radioautography. Using tritiated monoamine oxidase inhibitors (Ro41-1049 and lazabemide)--as high affinity substrates selective for monoamine oxidases A and B, respectively--it was found that monoamine oxidase B activity increased up to three-fold exclusively in temporal, parietal and frontal cortices of Alzheimer disease cases compared with controls. This increase was restricted to discrete patches (approximately 185 microns in diameter) which occupied approximately 12% of the cortical areas examined. In other brain regions (hippocampal formation >> caudate-putamen > cerebellum), patches of [3H]lazabemide-enriched binding were less abundant. [3H]Ro41-1049 binding (i.e. monoamine oxidase A) was unchanged in all tissues of diseased versus control brains. The monoamine oxidase B-enriched patches in all cortical regions correlated, in their distribution and frequency, with glial fibrillary acidic protein-immunoreactive clusters of astrocytes. Diffuse and mature beta-amyloid-immunoreactive senile plaques as well as patches of high density binding of [3H]PK-11195--a high-affinity ligand for peripheral-type (mitochondrial) benzodiazepine binding sites in microglia/macrophages--were found throughout Alzheimer diseased cortices. The up-regulation of monoamine oxidase B in plaque-associated astrocytes in Alzheimer's disease--in analogy to its proposed role in neurodegenerative disorders such as Parkinson's disease--might, indirectly, be a potential source of cytotoxic free radicals. Lazabemide, a selective reversible monoamine oxidase B inhibitor, is currently under clinical evaluation for the treatment of Parkinson's and Alzheimer's diseases. We conclude that enzyme radioautography with [3H]lazabemide is a reliable high resolution assay for plaque-associated astroglioses in Alzheimer's disease. Its clinical diagnostic utility for positron emission tomography or single photon emission computer tomography studies is being investigated.
AuthorsJ Saura, J M Luque, A M Cesura, M Da Prada, V Chan-Palay, G Huber, J Löffler, J G Richards
JournalNeuroscience (Neuroscience) Vol. 62 Issue 1 Pg. 15-30 (Sep 1994) ISSN: 0306-4522 [Print] United States
PMID7816197 (Publication Type: Journal Article)
Chemical References
  • Isoquinolines
  • Monoamine Oxidase Inhibitors
  • Picolinic Acids
  • Thiazoles
  • Ro 41-1049
  • lazabemide
  • Monoamine Oxidase
  • PK 11195
Topics
  • Aged
  • Aged, 80 and over
  • Alzheimer Disease (metabolism, pathology)
  • Astrocytes (metabolism)
  • Autoradiography
  • Brain (metabolism, pathology)
  • Female
  • Humans
  • Image Processing, Computer-Assisted
  • Immunohistochemistry
  • Isoquinolines (metabolism)
  • Male
  • Monoamine Oxidase (metabolism)
  • Monoamine Oxidase Inhibitors (metabolism)
  • Picolinic Acids (metabolism)
  • Thiazoles (metabolism)

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: