HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

Arrhythmia and delayed recovery of cardiac action potential during reperfusion after ischemia. Role of oxygen radical-induced no-reflow phenomenon.

Abstract
The role of reactive metabolites of oxygen, oxygen radicals (O-Rs), as mediators of potentially arrhythmogenic alterations in cellular electrical properties and contractile dysfunction of cardiac muscle during reperfusion after ischemia was investigated. Electrical and mechanical activities of arterially perfused guinea pig right ventricular walls were recorded simultaneously with intracellular microelectrodes and a force transducer. Preparations were maintained in Krebs-Henseleit solution (perfusion rate, 1.5 mL/min) and subjected to 30 minutes of no-flow ischemia followed by 60 minutes of reperfusion or pretreated with O-R scavengers (superoxide dismutase, 50 U/mL; catalase, 600 U/mL; and mannitol, 2 mmol/L) for 10 to 20 minutes, followed by 30 minutes of ischemia and 60 minutes of reperfusion. Reperfusion in untreated preparations caused (1) depolarization of resting membrane potential by 8 to 10 mV and slow recovery of action potential duration requiring 60 minutes to attain the preischemic duration, (2) tachyarrhythmias and premature action potentials, (3) postischemic contractile dysfunction, and (4) increased coronary perfusion pressure in untreated preparations. Pretreatment with scavenger cocktail affected neither electrical nor contractile activity before or during no-flow ischemia, but it (1) accelerated recovery of resting membrane potential and action potential duration, (2) reduced the incidence of tachyarrhythmia, (3) improved contractile function, and (4) inhibited the rise in perfusion pressure on reflow. Reperfusion with an exogenous O-R-generating system containing xanthine/xanthine oxidase (X/XO, 2 mmol/L:10 mU/mL) inhibited recovery of action potential duration and contractility. Treatment of normoxic arterially perfused right ventricular walls with X/XO caused a decline in action potential duration by approximately 20% within 30 minutes. In contrast, X/XO caused a 30% increase in the duration of action potentials in superfused papillary muscles or small strips of right ventricular walls over the same time period. Pretreatment with sodium nitroprusside (10 mumol/L) inhibited the decline in duration induced by X/XO in normoxic right ventricular walls but was without effect on prolongation due to X/XO in papillary muscles. Reperfusion with nitroprusside after no-flow ischemia caused (1) accelerated recovery of preischemic action potential configuration, (2) a significant decline in the incidence of reperfusion arrhythmias, (3) improved postischemic contractile performance, and (4) inhibition of the increase in perfusion pressure associated with reflow. The data indicate that slow recovery of the action potential duration caused by O-Rs in reperfusion cannot be explained by the direct effects of O-Rs on cardiac myocytes.(ABSTRACT TRUNCATED AT 400 WORDS)
AuthorsE A Aiello, R I Jabr, W C Cole
JournalCirculation research (Circ Res) Vol. 77 Issue 1 Pg. 153-62 (Jul 1995) ISSN: 0009-7330 [Print] United States
PMID7788873 (Publication Type: Comparative Study, Journal Article, Research Support, Non-U.S. Gov't)
Chemical References
  • Free Radicals
  • Nitroprusside
  • Oxygen
Topics
  • Action Potentials
  • Animals
  • Arrhythmias, Cardiac (etiology, metabolism)
  • Electrophysiology
  • Free Radicals
  • Guinea Pigs
  • Heart (drug effects, physiology)
  • In Vitro Techniques
  • Membrane Potentials
  • Myocardial Ischemia
  • Myocardial Reperfusion Injury (etiology, metabolism, physiopathology)
  • Nitroprusside (pharmacology)
  • Oxygen (metabolism)

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: