HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

Sequential isolation of proteoglycan synthesis mutants by using herpes simplex virus as a selective agent: evidence for a proteoglycan-independent virus entry pathway.

Abstract
A novel mouse L-cell mutant cell line defective in the biosynthesis of glycosaminoglycans was isolated by selection for cells resistant to herpes simplex virus (HSV) infection. These cells, termed sog9, were derived from mutant parental gro2C cells, which are themselves defective in heparan sulfate biosynthesis and 90% resistant to HSV type 1 (HSV-1) infection compared with control L cells (S. Gruenheid, L. Gatzke, H. Meadows, and F. Tufaro, J. Virol. 67:93-100, 1993). In this report, we show that sog9 cells exhibit a 3-order-of-magnitude reduction in susceptibility to HSV-1 compared with control L cells. In steady-state labeling experiments, sog9 cells accumulated almost no [35S]sulfate-labeled or [6-3H]glucosamine-labeled glycosaminoglycans, suggesting that the initiation of glycosaminoglycan assembly was specifically reduced in these cells. Despite these defects, sog9 cells were fully susceptible to vesicular stomatitis virus (VSV) and permissive for both VSV and HSV replication, assembly, and egress. HSV plaques formed in the sog9 monolayers in proportion to the amount of input virus, suggesting the block to infection was in the virus entry pathway. More importantly, HSV-1 infection of sog9 cells was not significantly reduced by soluble heparan sulfate, indicating that infection was glycosaminoglycan independent. Infection was inhibited by soluble gD-1, however, which suggests that glycoprotein gD plays a role in the infection of this cell line. The block to sog9 cell infection by HSV-1 could be eliminated by adding soluble dextran sulfate to the inoculum, which may act by stabilizing the virus at the sog9 cell surface. Thus, sog9 cells provide direct genetic evidence for a proteoglycan-independent entry pathway for HSV-1, and results with these cells suggest that HSV-1 is a useful reagent for the direct selection of novel animal cell mutants defective in the synthesis of cell surface proteoglycans.
AuthorsB W Banfield, Y Leduc, L Esford, K Schubert, F Tufaro
JournalJournal of virology (J Virol) Vol. 69 Issue 6 Pg. 3290-8 (Jun 1995) ISSN: 0022-538X [Print] United States
PMID7745676 (Publication Type: Journal Article, Research Support, Non-U.S. Gov't)
Chemical References
  • Polyelectrolytes
  • Polymers
  • Proteoglycans
  • polyanions
Topics
  • Adsorption
  • Animals
  • Herpesvirus 1, Human (physiology)
  • L Cells (metabolism, virology)
  • Membrane Fusion
  • Mice
  • Mutation
  • Polyelectrolytes
  • Polymers
  • Proteoglycans (biosynthesis, genetics)

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: