HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

Proto-oncogenic properties of the DP family of proteins.

Abstract
The cellular transcription factor DRTF1/E2F is implicated in the control of cellular proliferation due to its interaction with key regulators of cell cycle progression, such as the retinoblastoma tumour suppressor gene product, cyclins and cyclin-dependent kinases. DRTF1/E2F is a heterodimeric DNA binding activity which arises when a member of two distinct families of proteins, DP and E2F, interact as DP/E2F heterodimers, for example, DP-1 and E2F-1. In DRTF1/E2F the activity of DP-1 is under cell cycle control, possibly by phosphorylation, and in many types of cells it is a frequent, if not general DNA binding component of DRTF1/E2F. The expression of other DP proteins, such as DP-2, is tissue-restricted. Here, we show that DP-1 and DP-2 are integrated with another growth regulating pathway which involves signal transduction emanating from activated Ras protein. Thus, activated Ha-ras can co-operate with DP-1 or DP-2 in the transformation of rat embryo fibroblasts, establishing for the first time that DP proteins are endowed with proto-oncogenic activity. Moreover, an analysis of a dominant-negative and mutant DP-1 proteins suggests that the primary target through which DP-1 mediates its oncogenic activity is unlikely to be due to the regulation of E2F site-transcription, suggesting an E2F-independent effector function for DP-1. These results therefore establish DP genes as proto-oncogenes and thus argue that deregulating the normal control of DP protein activity will be important in promoting aberrant cellular proliferation.
AuthorsK Jooss, E W Lam, A Bybee, R Girling, R Müller, N B La Thangue
JournalOncogene (Oncogene) Vol. 10 Issue 8 Pg. 1529-36 (Apr 20 1995) ISSN: 0950-9232 [Print] England
PMID7731707 (Publication Type: Journal Article, Research Support, Non-U.S. Gov't)
Chemical References
  • Carrier Proteins
  • Cell Cycle Proteins
  • DNA-Binding Proteins
  • Dp transcription factor, Drosophila
  • Drosophila Proteins
  • E2F Transcription Factors
  • E2F1 Transcription Factor
  • E2f1 protein, rat
  • Retinoblastoma-Binding Protein 1
  • Trans-Activators
  • Transcription Factor DP1
  • Transcription Factors
Topics
  • Animals
  • Carrier Proteins
  • Cell Cycle Proteins
  • Cell Line
  • Cell Transformation, Neoplastic
  • DNA-Binding Proteins (chemistry, genetics, physiology)
  • Drosophila Proteins
  • E2F Transcription Factors
  • E2F1 Transcription Factor
  • Genes, ras
  • Proto-Oncogenes
  • Rats
  • Retinoblastoma-Binding Protein 1
  • Structure-Activity Relationship
  • Trans-Activators (chemistry, genetics, physiology)
  • Transcription Factor DP1
  • Transcription Factors (physiology)
  • Transcription, Genetic
  • Transfection

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: