HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

Graded intracellular acidosis produces extensive and reversible reductions in the effective free energy change of ATP hydrolysis in a molluscan muscle.

Abstract
Phosphorus nuclear magnetic resonance spectroscopy was used to evaluate the impact of experimental reductions of intracellular pH on in vitro preparations of the radula protractor muscle of the marine gastropod, Busycon canaliculatum. The intracellular pH of radula refractor muscle bundles superfused with buffered artificial sea water (pH = 7.8) was 7.29. It was possible to clamp muscle intracellular pH at various acidotic states by changing the superfusate to 5, 10, and 15 mmol.l-1 5,5-dimethyl-oxazolidine-2,4-dione in buffered artificial sea water (pH = 6.5). Consistent and temporally stable reductions of intracellular pH were achieved (intracellular pH = 6.98, 6.79, and 6.62, respectively). During the acidotic transitions, arginine phosphate concentrations decreased and inorganic phosphate concentrations increased in a reciprocal manner and remained essentially constant after the intracellular pH stabilized. The extent of changes in arginine phosphate and inorganic phosphate was directly proportional to the magnitude of the imposed acidosis. Total adenosine triphosphate concentrations remained unchanged in all treatments. However, the magnesium adenosine triphosphate to total adenosine triphosphate ratio declined in direct relation to the extent of the acidosis. Intracellular free Mg2+ fell incrementally with reduced intracellular pH. All of the above effects were rapidly reversed when the 5,5-dimethyl-oxazolidine-2,4-dione was washed out by changing the superfusate to buffered artificial sea water (pH = 7.8). Mg-adenosine diphosphate concentrations were calculated in all treatments using equilibrium constants for the arginine kinase reaction corrected for pH and intracellular free [Mg2+]. The metabolite, intracellular pH, and [Mg2+] data were used to estimate the effective free energy of hydrolysis of adenosine triphosphate (dG/d xi ATP) under most experimental conditions. Experimental acidosis resulted in dramatic reductions in dG/d xi ATP which were fully reversible upon wash-out of 5,5-dimethyl-dioxazolidine-2,4-dione and recovery to normal intracellular pH conditions. Acidosis resulted in net hydrolysis of arginine phosphate, likely via a complex mechanism involving enhancement of rate of adenosine triphosphate hydrolysis and/or inhibition of adenosine triphosphate synthesis.
AuthorsC A Combs, W R Ellington
JournalJournal of comparative physiology. B, Biochemical, systemic, and environmental physiology (J Comp Physiol B) Vol. 165 Issue 3 Pg. 203-12 ( 1995) ISSN: 0174-1578 [Print] Germany
PMID7665735 (Publication Type: Journal Article, Research Support, U.S. Gov't, Non-P.H.S.)
Chemical References
  • Adenosine Triphosphate
  • Dimethadione
  • Magnesium
Topics
  • Acidosis (metabolism)
  • Adenosine Triphosphate (metabolism)
  • Animals
  • Dimethadione (pharmacology)
  • Hydrolysis (drug effects)
  • Magnesium (metabolism)
  • Mollusca (metabolism)
  • Muscles (drug effects, metabolism)

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: