HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

Eukaryotic initiation factor 4E degradation during brain ischemia.

Abstract
Suppression of protein synthesis in the brain following an ischemic insult has been thought to occur because of inhibition of translation initiation. All eukaryotic mRNAs, with the exception of heat-shock transcripts, require the activity of eukaryotic initiation factor (eIF) 4E for formation of the translation initiation complex, and eIF-4E availability is rate-limiting. The response of brain eIF-4E concentration and phosphorylation following decapitation ischemia was studied in rat brain homogenates after electrophoresis and western blotting with antibodies against eIF-4E and phosphoserine, respectively. There was no change in level of eIF-4E after 5 min of ischemia (p = 0.82 vs. time 0), but it had decreased 32 (p = 0.01) and 57% (p = 0.006) after 10 and 20 min of ischemia, respectively. There was no loss of serine phosphorylation on eIF-4E beyond signal loss observed due to degradation of the protein itself (p = 0.31). In vitro exposure of eIF-4E to activated mu-calpain resulted in a 50% loss in 10 min of eIF-4E on western blots. If active eIF-4E is required for translation of its own mRNA, degradation of this protein during ischemia, possibly by activated mu-calpain, could be a direct mechanism of irreversible neuronal injury, and the rate of proteolysis of eIF-4E could place an upper time limit on the maximal duration of global brain ischemia compatible with neurologic recovery.
AuthorsR W Neumar, D J DeGracia, B C White, P J McDermott, D R Evans, G S Krause
JournalJournal of neurochemistry (J Neurochem) Vol. 65 Issue 3 Pg. 1391-4 (Sep 1995) ISSN: 0022-3042 [Print] England
PMID7643117 (Publication Type: Journal Article, Research Support, Non-U.S. Gov't)
Chemical References
  • Eukaryotic Initiation Factor-4E
  • Peptide Initiation Factors
  • RNA, Messenger
  • Phosphoserine
  • Calpain
Topics
  • Animals
  • Blotting, Western
  • Brain (metabolism)
  • Calpain (pharmacology)
  • Eukaryotic Initiation Factor-4E
  • Ischemic Attack, Transient (metabolism)
  • Male
  • Peptide Initiation Factors (genetics, metabolism)
  • Phosphorylation
  • Phosphoserine (metabolism)
  • RNA, Messenger (metabolism)
  • Rats
  • Time Factors

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: