HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

O2-sensitive K+ currents in carotid body chemoreceptor cells from normoxic and chronically hypoxic rats and their roles in hypoxic chemotransduction.

Abstract
Carotid body-mediated ventilatory increases in response to acute hypoxia are attenuated in animals reared in an hypoxic environment. Normally, O2-sensitive K+ channels in neurosecretory type I carotid body cells are intimately involved in excitation of the intact organ by hypoxia. We have therefore studied K+ channels and their sensitivity to acute hypoxia (PO2 12-20 mmHg) in type I cells isolated from neonatal rats born and reared in normoxic and hypoxic environments. When compared with cells from normoxic rats, K+ current density in cells from hypoxic rats was significantly reduced, whereas Ca2+ current density was unaffected. Charybdotoxin (20 nM) inhibited K+ currents in cells from normoxic rats by approximately 25% but was without significant effect in cells from hypoxic rats. However, hypoxia caused similar, reversible inhibitions of K+ currents in cells from the two groups. Resting membrane potentials (measured at 37 degrees C using the perforated-patch technique) were similar in normoxic and hypoxic rats. However, although acute hypoxia depolarized type I cells of normoxic rats, it was without effect on membrane potential in type I cells from hypoxic animals. Charybdotoxin (20 nM) also depolarized cells from normoxic rats. Our results suggest that type I cells from chronically hypoxic rats, like normoxic rats, possess O2-sensing mechanisms. However, they lack charybdotoxin-sensitive K+ channels that contribute to resting membrane potential in normoxically reared rats, and this appears to prevent them from depolarizing (and hence triggering Ca2+ influx and neurosecretion) during acute hypoxia.
AuthorsC N Wyatt, C Wright, D Bee, C Peers
JournalProceedings of the National Academy of Sciences of the United States of America (Proc Natl Acad Sci U S A) Vol. 92 Issue 1 Pg. 295-9 (Jan 03 1995) ISSN: 0027-8424 [Print] United States
PMID7529413 (Publication Type: Comparative Study, Journal Article, Research Support, Non-U.S. Gov't)
Chemical References
  • Calcium Channels
  • Potassium Channels
  • Scorpion Venoms
  • Charybdotoxin
  • Oxygen
Topics
  • Animals
  • Animals, Newborn
  • Calcium Channels (drug effects, physiology)
  • Carotid Body (physiology, physiopathology)
  • Cells, Cultured
  • Charybdotoxin
  • Chemoreceptor Cells (physiology)
  • Hypoxia (physiopathology)
  • Membrane Potentials (drug effects, physiology)
  • Neurons (drug effects, physiology)
  • Oxygen (pharmacology)
  • Potassium Channels (drug effects, physiology)
  • Rats
  • Rats, Wistar
  • Reference Values
  • Scorpion Venoms (pharmacology)
  • Signal Transduction

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: