HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

Prophage repression as a model for the study of gene regulation. I. Titration of the lambda repressor.

Abstract
Wiesmeyer, Herbert (Vanderbilt University, Nashville, Tenn.). Prophage repression as a model for the study of gene regulation. I. Titration of the lambda repressor. J. Bacteriol. 91:89-94. 1966.-The concentration of lambda repressor molecules within a lambda lysogenic cell was estimated from the multiplicity of superinfecting homologous phage necessary to permit replication and release of plaque-forming units. A multiplicity of 20 superinfecting phage was found sufficient to permit replication to occur in the normal lambda lysogen. The phage released after lysis of the superinfected lysogen was composed of both prophage and superinfecting phage types. Superinfection of the lysogen at lower multiplicities resulted in the lysis of only a small percentage of infected cells and is thought to represent a possible heterogeneity of repressor concentration in the lysogenic population. Viability of the superinfecting particle was found to be unnecessary for titration of the repressor. The repressor concentration in three lysogens of the nonultraviolet-inducible mutant of lambda, lambda(ind-), was found to be greater than 20 regardless of the host bacterium. However, the number of cells yielding phage after superinfection was found to vary with the particular host. The specificity of the lambda repressor was shown to be limited to homologous phage, as determined following heterologous superinfection experiments with phages T6r, 82c, 434c, 434hy, and 424. In all instances except that of superinfection with phage 434hy, only heterologous phage replication occurred. Superinfection by phage 434hy resulted in the release of both prophage and superinfecting phage types. The latter type represented approximately 80% of the total phage released.
AuthorsH Wiesmeyer
JournalJournal of bacteriology (J Bacteriol) Vol. 91 Issue 1 Pg. 89-94 (Jan 1966) ISSN: 0021-9193 [Print] United States
PMID5903114 (Publication Type: Journal Article)
Chemical References
  • DNA, Viral
Topics
  • Bacteriolysis
  • Coliphages
  • DNA, Viral
  • Genes
  • In Vitro Techniques
  • Models, Theoretical

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: