HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

Extracellular Vesicles from Human Adipose Tissue-Derived Mesenchymal Stem Cells Suppress RANKL-Induced Osteoclast Differentiation via miR122-5p.

Abstract
Researchers are increasingly interested in cell therapy using mesenchymal stem cells (MSCs) as an alternative remedy for osteoporosis, with fewer side effects. Thus, we isolated and characterized extracellular vesicles (EVs) from human adipose tissue-derived MSCs (hMSCs) and investigated their inhibitory effects on RANKL-induced osteoclast differentiation. Purified EVs were collected from the supernatant of hMSCs by tangential flow filtration. Characterization of EVs included typical evaluation of the size and concentration of EVs by nanoparticle tracking analysis and morphology analysis using transmission electron microscopy. hMSC-EVs inhibited RANKL-induced differentiation of bone marrow-derived macrophages (BMDMs) into osteoclasts in a dose-dependent manner. F-actin ring formation and bone resorption were also reduced by EV treatment of osteoclasts. In addition, EVs decreased RANKL-induced phosphorylation of p38 and JNK and expression of osteoclastogenesis-related genes in BMDMs treated with RANKL. To elucidate which part of the hMSC-EVs plays a role in the inhibition of osteoclast differentiation, we analyzed miRNA profiles in hMSC-EVs. The results showed that has-miR122-5p was present at significantly high read counts. Overexpression of miR122-5p in BMDMs significantly inhibited RANKL-induced osteoclast differentiation and induced defects in F-actin ring formation and bone resorption. Our results also revealed that RANKL-induced phosphorylation of p38 and JNK and osteoclast-specific gene expression was decreased by miR122-5p transfection, which was consistent with the results of hMSC-EVs. These findings suggest that hMSC-EVs containing miR122-5p inhibit RANKL-induced osteoclast differentiation via the downregulation of molecular mechanisms and could be a preventive candidate for destructive bone diseases.
AuthorsJoo-Hee Choi, Soo-Eun Sung, Kyung-Ku Kang, Sijoon Lee, Minkyoung Sung, Wook-Tae Park, Young In Kim, Min-Soo Seo, Gun Woo Lee
JournalBiochemical genetics (Biochem Genet) (Nov 29 2023) ISSN: 1573-4927 [Electronic] United States
PMID38017286 (Publication Type: Journal Article)
Copyright© 2023. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: