HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

Carbonates and intermediate-depth seismicity: Stable and unstable shear in altered subducting plates and overlying mantle.

Abstract
A model for intermediate-depth earthquakes of subduction zones is evaluated based on shear localization, shear heating, and runaway creep within thin carbonate layers in an altered downgoing oceanic plate and the overlying mantle wedge. Thermal shear instabilities in carbonate lenses add to potential mechanisms for intermediate-depth seismicity, which are based on serpentine dehydration and embrittlement of altered slabs or viscous shear instabilities in narrow fine-grained olivine shear zones. Peridotites in subducting plates and the overlying mantle wedge may be altered by reactions with CO2-bearing fluids sourced from seawater or the deep mantle, to form carbonate minerals, in addition to hydrous silicates. Effective viscosities of magnesian carbonates are higher than those for antigorite serpentine and they are markedly lower than those for H2O-saturated olivine. However, magnesian carbonates may extend to greater mantle depths than hydrous silicates at temperatures and pressures of subduction zones. Strain rates within altered downgoing mantle peridotites may be localized within carbonated layers following slab dehydration. A simple model of shear heating and temperature-sensitive creep of carbonate horizons, based on experimentally determined creep laws, predicts conditions of stable and unstable shear with strain rates up to 10/s, comparable to seismic velocities of frictional fault surfaces. Applied to intermediate-depth earthquakes of the Tonga subduction zone and the double Wadati-Benioff zone of NE Japan, this mechanism provides an alternative to the generation of earthquakes by dehydration embrittlement, beyond the stability of antigorite serpentine in subduction zones.
AuthorsAbhishek Prakash, Caleb W Holyoke 3rd, Peter B Kelemen, Stephen H Kirby, Andreas K Kronenberg, William M Lamb
JournalProceedings of the National Academy of Sciences of the United States of America (Proc Natl Acad Sci U S A) Vol. 120 Issue 21 Pg. e2219076120 (May 23 2023) ISSN: 1091-6490 [Electronic] United States
PMID37186835 (Publication Type: Journal Article)

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: