HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

Chondroitin Sulfate from Oreochromis niloticus Waste Reduces Leukocyte Influx in an Acute Peritonitis Model.

Abstract
Oreochromis niloticus (tilapia) is one of the most cultivated fish species worldwide. Tilapia farming generates organic waste from fish removal processes in nurseries. Visceral waste can damage natural ecosystems. Therefore, the use of this material as a source of biomolecules helps reduce environmental impacts and improve pharmacological studies. Tilapia viscera were subjected to proteolysis and complexation with an ion-exchange resin. The obtained glycosaminoglycans were purified using ion exchange chromatography (DEAE-Sephacel). The electrophoretic profile and analysis of 1H/13C nuclear magnetic resonance (NMR) spectra allowed for the characterization of the compound as chondroitin sulfate and its sulfation position. This chondroitin was named CST. We tested the ability of CST to reduce leukocyte influx in acute peritonitis models induced by sodium thioglycolate and found a significant reduction in leukocyte migration to the peritoneal cavity, similar to the polymorphonuclear population of the three tested doses of CST. This study shows, for the first time, the potential of CST obtained from O. niloticus waste as an anti-inflammatory drug, thereby contributing to the expansion of the study of molecules with pharmacological functions.
AuthorsMarianna Barros Silva, Lívia de Lourdes de Sousa Pinto, Luiz Henrique Medeiros, Airton Araújo Souza Jr, Suely Ferreira Chavante, Luciana Guimarães Alves Filgueira, Rafael Barros Gomes Camara, Guilherme Lanzi Sassaki, Hugo Alexandre Oliveira Rocha, Giulianna Paiva Viana Andrade
JournalMolecules (Basel, Switzerland) (Molecules) Vol. 28 Issue 7 (Mar 30 2023) ISSN: 1420-3049 [Electronic] Switzerland
PMID37049845 (Publication Type: Journal Article)
Chemical References
  • Chondroitin Sulfates
Topics
  • Animals
  • Cichlids
  • Chondroitin Sulfates
  • Ecosystem
  • Tilapia
  • Peritonitis (chemically induced, drug therapy)

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: