HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

Regulation of red cell 2,3-DPG and Hb-O2-affinity during acute exercise.

Abstract
Reports from the literature and our own data on red cell 2,3-DPG and its importance for unloading O2 from Hb to the tissues during exhaustive exercise are contradictory. We investigated red cell metabolism during incremental bicycle ergometry of various durations. Furthermore changes in blood composition occurring during exercise were simulated under in vitro conditions. The effect of a moderate (11.2 mmol X l-1 lactate, pH = 7.127) and severe (18 mmol X l-1 lactate, pH = 6.943) lactacidosis on red cell 2,3-DPG concentration was compared with the effect of similar acidosis induced by HCl. Our data indicate that the concentration of 2,3-DPG in red cells depends on the degree of lactacidosis, but not on the duration of exercise. During moderate lactacidosis red cell 2,3-DPG remains unchanged. This can be explained by an interruption of red cell glycolysis on the PK and GAP-DH step caused by a lactate and pyruvate influx into the erythrocyte, as well as an intraerythrocytic acidosis and a drop in the NAD/NADH ratio. During severe lactacidosis and HCL-induced acidosis a decrease in 2,3-DPG due to an inhibition of 2,3-DPGmutase and other glycolytic enzymes can be found. Mathematical correction of the observed P-50 value for the decrease in 2,3-DPG occurring during severe lactacidosis showed that a decrease in Hb-O2-affinity during strenuous exercise depends on the degree of lactacidosis and temperature elevation.
AuthorsH Mairbäurl, W Schobersberger, W Hasibeder, G Schwaberger, G Gaesser, K R Tanaka
JournalEuropean journal of applied physiology and occupational physiology (Eur J Appl Physiol Occup Physiol) Vol. 55 Issue 2 Pg. 174-80 ( 1986) ISSN: 0301-5548 [Print] Germany
PMID3699004 (Publication Type: Journal Article, Research Support, Non-U.S. Gov't)
Chemical References
  • Diphosphoglyceric Acids
  • Hemoglobins
  • Lactates
  • 2,3-Diphosphoglycerate
  • Lactic Acid
Topics
  • 2,3-Diphosphoglycerate
  • Adult
  • Diphosphoglyceric Acids (blood)
  • Erythrocytes (metabolism)
  • Glycolysis
  • Hemoglobins (metabolism)
  • Humans
  • Hydrogen-Ion Concentration
  • Lactates (blood)
  • Lactic Acid
  • Male
  • Oxygen Consumption
  • Physical Exertion

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: