HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

HSF1 Attenuates the Release of Inflammatory Cytokines Induced by Lipopolysaccharide through Transcriptional Regulation of Atg10.

Abstract
Autophagy plays an important role in endotoxemic mice, and heat shock factor 1 (HSF1) plays a crucial protective role in endotoxemic mice. However, the protective mechanisms of HSF1 are poorly understood. In this text, bioinformatics analysis, chromatin immunoprecipitation, and electrophoresis mobility shift assay were employed to investigate the underlying mechanisms. The results showed that the release of inflammatory cytokines increased and autophagy decreased significantly in Hsf1-/- endotoxemic mice compared with those in Hsf1+/+ endotoxemic mice. HSF1 could directly bind to the noncoding promoter region of the autophagy-related gene 10 (Atg10). The expression of ATG10 and the ratio of LC3-II/LC3-I were obviously decreased in LPS-treated Hsf1-/- peritoneal macrophages (PM) versus those in LPS-treated Hsf1+/+ PM. Overexpression of HSF1 increased the level of the ATG10 protein and enhanced the ratio of LC3-II/LC3-I in RAW264.7 cells. In contrast, silencing of HSF1 decreased the expression of ATG10 and markedly lowered the ratio of LC3-II/LC3-I. In a cotransfected cell experiment, the upregulation of autophagy by overexpression HSF1 was reversed by small interfering RNA (siRNA)-ATG10. Compared with the overexpression HSF1, the release of inflammatory cytokines induced by lipopolysaccharide (LPS) was decreased in pcDNA3.1-HSF1 with siRNA-ATG10 cotransfected RAW264.7 cells. On the other hand, the decrease of autophagy by siRNA-HSF1 was compensated by overexpression of ATG10. Compared with siRNA-HSF1, the release of inflammatory cytokines induced by LPS was increased in siRNA-HSF1 with pcDNA3.1-ATG10 cotransfected RAW264.7 cells. These results presented a novel mechanism that HSF1 attenuated the release of inflammatory cytokines induced by LPS through transcriptional regulation of Atg10. Targeting of HSF1-Atg10-autophagy might be an attractive strategy in endotoxemia therapeutics. IMPORTANCE HSF1 plays an important protective role in endotoxemic mice. However, the protective mechanisms of HSF1 are poorly understood. In the present study, we demonstrated that HSF1 upregulated ATG10 through specifically binding Atg10 promoter's noncoding region in LPS-treated PM and RAW264.7 cells. By depletion of HSF1, the expression of ATG10 was significantly decreased, leading to aggravate releasing of inflammatory cytokines in LPS-treated RAW264.7 cells. These findings provided a new mechanism of HSF1 in endotoxemic mice.
AuthorsHong Tan, Feifei Huang, Meiyuan Huang, Xia Wu, Zhongyi Tong
JournalMicrobiology spectrum (Microbiol Spectr) Vol. 11 Issue 1 Pg. e0305922 (02 14 2023) ISSN: 2165-0497 [Electronic] United States
PMID36598250 (Publication Type: Journal Article, Research Support, Non-U.S. Gov't)
Chemical References
  • Cytokines
  • Lipopolysaccharides
  • Heat Shock Transcription Factors
  • RNA, Small Interfering
  • Hsf1 protein, mouse
Topics
  • Mice
  • Animals
  • Cytokines (metabolism)
  • Lipopolysaccharides
  • Heat Shock Transcription Factors (genetics, metabolism)
  • Gene Expression Regulation
  • RNA, Small Interfering

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: