HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

Biochemical, Enzymatic, and Computational Characterization of Recurrent Somatic Mutations of the Human Protein Tyrosine Phosphatase PTP1B in Primary Mediastinal B Cell Lymphoma.

Abstract
Human protein tyrosine phosphatase 1B (PTP1B) is a ubiquitous non-receptor tyrosine phosphatase that serves as a major negative regulator of tyrosine phosphorylation cascades of metabolic and oncogenic importance such as the insulin, epidermal growth factor receptor (EGFR), and JAK/STAT pathways. Increasing evidence point to a key role of PTP1B-dependent signaling in cancer. Interestingly, genetic defects in PTP1B have been found in different human malignancies. Notably, recurrent somatic mutations and splice variants of PTP1B were identified in human B cell and Hodgkin lymphomas. In this work, we analyzed the molecular and functional levels of three PTP1B mutations identified in primary mediastinal B cell lymphoma (PMBCL) patients and located in the WPD-loop (V184D), P-loop (R221G), and Q-loop (G259V). Using biochemical, enzymatic, and molecular dynamics approaches, we show that these mutations lead to PTP1B mutants with extremely low intrinsic tyrosine phosphatase activity that display alterations in overall protein stability and in the flexibility of the active site loops of the enzyme. This is in agreement with the key role of the active site loop regions, which are preorganized to interact with the substrate and to enable catalysis. Our study provides molecular and enzymatic evidence for the loss of protein tyrosine phosphatase activity of PTP1B active-site loop mutants identified in human lymphoma.
AuthorsRongxing Liu, Yujie Sun, Jérémy Berthelet, Linh-Chi Bui, Ximing Xu, Mireille Viguier, Jean-Marie Dupret, Frédérique Deshayes, Fernando Rodrigues Lima
JournalInternational journal of molecular sciences (Int J Mol Sci) Vol. 23 Issue 13 (Jun 24 2022) ISSN: 1422-0067 [Electronic] Switzerland
PMID35806064 (Publication Type: Journal Article)
Chemical References
  • Tyrosine
  • PTPN1 protein, human
  • Protein Tyrosine Phosphatase, Non-Receptor Type 1
Topics
  • Catalytic Domain
  • Humans
  • Lymphoma, B-Cell (genetics)
  • Mutation
  • Phosphorylation
  • Protein Tyrosine Phosphatase, Non-Receptor Type 1 (genetics, metabolism)
  • Tyrosine (metabolism)

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: