HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

Remodeling tumor immunosuppressive microenvironment via a novel bioactive nanovaccines potentiates the efficacy of cancer immunotherapy.

Abstract
The clinical outcomes of cancer nanovaccine have been largely impeded owing to the low antigen-specific T cell response rate and acquired resistance caused by the immunosuppressive tumor microenvironment (TME). Here, we reported a tumor acidity-responsive nanovaccine to remodel the immunosuppressive TME and expand the recruitment of tumor infiltrating lymphocytes (TILs) using hybrid micelles (HM), which encapsulated colony stimulating factor 1 receptor (CSF1-R) inhibitor BLZ-945 and indoleamine 2,3-dioxygenase (IDO) inhibitor NLG-919 in its core and displayed a model antigen ovalbumin (OVA) on its surface (denoted as BN@HM-OVA). The bioactive nanovaccine is coated with a polyethylene glycol (PEG) shell for extending nanoparticle circulation. The shell can be shed in response to the weakly acidic tumor microenvironment. The decrease in size and the increase in positive charge may cause the deep tumor penetration of drugs. We demonstrated that the bioactive nanovaccine dramatically enhance antigen presentation by dendritic cells (DCs) and drugs transportation into M1-like tumor-associated macrophages (TAMs) and tumor cells via size reduction and increasing positive charge caused by the weakly acidic TME. Such bioactive nanovaccine could remodel the immunosuppressive TME into an effector T cells favorable environment, leading to tumor growth inhibition in prophylactic and therapeutic E.G7-OVA tumor models. Furthermore, combining the bioactive nanovaccine with simultaneous anti-PD-1 antibody treatment leads to a long-term tumor inhibition, based on the optimal timing and sequence of PD-1 blockade against T cell receptor. This research provides a new strategy for the development of efficient cancer immunotherapy.
AuthorsXiaoxue Xie, Yi Feng, Hanxi Zhang, Qingqing Su, Ting Song, Geng Yang, Ningxi Li, Xiaodan Wei, Tingting Li, Xiang Qin, Shun Li, Chunhui Wu, Xiaojuan Zhang, Guixue Wang, Yiyao Liu, Hong Yang
JournalBioactive materials (Bioact Mater) Vol. 16 Pg. 107-119 (Oct 2022) ISSN: 2452-199X [Electronic] China
PMID35386322 (Publication Type: Journal Article)
Copyright© 2022 The Authors.

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: