HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

A Strategy for Screening the Lipid-Lowering Components in Alismatis Rhizoma Decoction Based on Spectrum-Effect Analysis.

Abstract
Alismatis Rhizoma decoction (ARD), comprised of Alisma plantago-aquatica subsp. orientale (Sam.) Sam and Atractylodes macrocephala Koidz. at a ratio of 5 : 2, is a classic traditional Chinese medicine (TCM) formula with successful clinical hypolipidemic effect. This paper aimed to explore the major bioactive compounds and potential mechanism of ARD in the treatment of hyperlipidemia on the basis of spectrum-effect analysis and molecular docking. Nine ARD samples with varying ratios of the constituent herbs were prepared and analyzed by UPLC-Q-TOF/MS to obtain the chemical spectra. Then, the lipid-lowering ability of the nine samples was tested in an oleic acid-induced lipid accumulation model in human hepatoma cells (HepG2). Grey relational analysis and partial least squares regression analysis were then performed to determine the correlation between the chemical spectrums and lipid-lowering efficacies of ARD. The potential mechanisms of the effective compounds were investigated by docking with the farnesoid X receptor (FXR) protein. The results indicated that alisol B 23-acetate, alisol C 23-acetate, and alisol B appeared to be the core effective components on hyperlipidemia in ARD. Molecular docking further demonstrated that all three compounds could bind to FXR and were potential FXR agonists for the treatment of hyperlipidemia. This study elucidated the effective components and potential molecular mechanism of action of ARD for treating hyperlipidemia from a perspective of different compatibility, providing a new and feasible reference for the research of TCM formulas such as ARD.
AuthorsXiao-Yan Chang, Jia-Shuo Wu, Fang-Qing Zhang, Zhuang-Zhuang Li, Wei-Yi Jin, Jing-Xun Wang, Wei-Hua Wang, Yue Shi
JournalJournal of analytical methods in chemistry (J Anal Methods Chem) Vol. 2022 Pg. 2363242 ( 2022) ISSN: 2090-8865 [Print] Egypt
PMID35028165 (Publication Type: Journal Article)
CopyrightCopyright © 2022 Xiao-Yan Chang et al.

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: