HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

The interactions of ZDHHC5/GOLGA7 with SARS-CoV-2 spike (S) protein and their effects on S protein's subcellular localization, palmitoylation and pseudovirus entry.

AbstractBACKGROUND:
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike (S) protein determines virus entry and the palmitoylation of S protein affects virus infection. An acyltransferase complex ZDHHC5/GOGAL7 that interacts with S protein was detected by affinity purification mass spectrometry (AP-MS). However, the palmitoylated cysteine residues of S protein, the effects of ZDHHC5 or GOLGA7 knockout on S protein's subcellular localization, palmitoylation, pseudovirus entry and the enzyme for depalmitoylation of S protein are not clear.
METHODS:
The palmitoylated cysteine residues of S protein were identified by acyl-biotin exchange (ABE) assays. The interactions between S protein and host proteins were analyzed by co-immunoprecipitation (co-IP) assays. Subcellular localizations of S protein and host proteins were analyzed by fluorescence microscopy. ZDHHC5 or GOGAL7 gene was edited by CRISPR-Cas9. The entry efficiencies of SARS-CoV-2 pseudovirus into A549 and Hela cells were analyzed by measuring the activity of Renilla luciferase.
RESULTS:
In this investigation, all ten cysteine residues in the endodomain of S protein were palmitoylated. The interaction of S protein with ZDHHC5 or GOLGA7 was confirmed. The interaction and colocalization of S protein with ZDHHC5 or GOLGA7 were independent of the ten cysteine residues in the endodomain of S protein. The interaction between S protein and ZDHHC5 was independent of the enzymatic activity and the PDZ-binding domain of ZDHHC5. Three cell lines HEK293T, A549 and Hela lacking ZDHHC5 or GOLGA7 were constructed. Furthermore, S proteins still interacted with one host protein in HEK293T cells lacking the other. ZDHHC5 or GOLGA7 knockout had no significant effect on S protein's subcellular localization or palmitoylation, but significantly decreased the entry efficiencies of SARS-CoV-2 pseudovirus into A549 and Hela cells, while varying degrees of entry efficiencies may be linked to the cell types. Additionally, the S protein interacted with the depalmitoylase APT2.
CONCLUSIONS:
ZDHHC5 and GOLGA7 played important roles in SARS-CoV-2 pseudovirus entry, but the reason why the two host proteins affected pseudovirus entry remains to be further explored. This study extends the knowledge about the interactions between SARS-CoV-2 S protein and host proteins and probably provides a reference for the corresponding antiviral methods.
AuthorsXiao-Tao Zeng, Xiao-Xi Yu, Wei Cheng
JournalVirology journal (Virol J) Vol. 18 Issue 1 Pg. 257 (12 27 2021) ISSN: 1743-422X [Electronic] England
PMID34961524 (Publication Type: Journal Article, Research Support, Non-U.S. Gov't)
Copyright© 2021. The Author(s).
Chemical References
  • GOLGA7 protein, human
  • Golgi Matrix Proteins
  • Spike Glycoprotein, Coronavirus
  • spike protein, SARS-CoV-2
  • Acyltransferases
  • ZDHHC5 protein, human
  • Cysteine
Topics
  • Acyltransferases
  • COVID-19
  • Cysteine
  • Golgi Matrix Proteins (genetics, metabolism)
  • HEK293 Cells
  • HeLa Cells
  • Humans
  • Lipoylation
  • SARS-CoV-2
  • Spike Glycoprotein, Coronavirus (genetics, metabolism)
  • Virus Internalization

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: