HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

The Differential Effects of HDL Subpopulations on Lipoprotein Lipase (LPL)-Mediated VLDL Catabolism.

Abstract
High-density lipoprotein (HDL) subpopulations functional assessment is more relevant for HDL anti-atherogenic activity than cholesterol level. The aim of the study was to assess the impact of HDL-2 and HDL-3 on lipoprotein lipase (LPL)-mediated very-low-density lipoprotein (VLDL) catabolism related to hypertriglyceridemia development. VLDL and HDLs were isolated from serum by ultracentrifugation. VLDL was incubated with LPL in the absence and presence of total HDL or HDL subpopulations. Next, VLDL remnants were separated, and their composition and electrophoretic mobility was assessed. Both HDL subpopulations increased the efficiency of triglyceride lipolysis and apolipoprotein CII and CIII removal from VLDL up to ~90%. HDL-3 exerted significantly greater impact than HDL-2 on apolipoprotein E (43% vs. 18%, p < 0.001), free cholesterol (26% vs. 18%, p < 0.05) and phospholipids (53% vs. 43%, p < 0.05) removal from VLDL and VLDL remnant electrophoretic mobility (0.18 vs. 0.20, p < 0.01). A greater release of these components was also observed in the presence of total HDL with a low HDL-2/HDL-3 cholesterol ratio. Both HDL subpopulations affect VLDL composition during lipolysis, but HDL-3 exhibited a greater effect on this process. Altered composition of HDL related to significant changes in the distribution between HDL-2 and HDL-3 can influence the VLDL remnant features, affecting atherosclerosis progression.
AuthorsEwa Wieczorek, Agnieszka Ćwiklińska, Agnieszka Kuchta, Barbara Kortas-Stempak, Anna Gliwińska, Maciej Jankowski
JournalBiomedicines (Biomedicines) Vol. 9 Issue 12 (Dec 05 2021) ISSN: 2227-9059 [Print] Switzerland
PMID34944655 (Publication Type: Journal Article)

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: