HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

Structural Optimization and Biological Activity of Pyrazole Derivatives: Virtual Computational Analysis, Recovery Assay and 3D Culture Model as Potential Predictive Tools of Effectiveness against Trypanosoma cruzi.

Abstract
Chagas disease, a chronic and silent disease caused by Trypanosoma cruzi, is currently a global public health problem. The treatment of this neglected disease relies on benznidazole and nifurtimox, two nitroheterocyclic drugs that show limited efficacy and severe side effects. The failure of potential drug candidates in Chagas disease clinical trials highlighted the urgent need to identify new effective chemical entities and more predictive tools to improve translational success in the drug development pipeline. In this study, we designed a small library of pyrazole derivatives (44 analogs) based on a hit compound, previously identified as a T. cruzi cysteine protease inhibitor. The in vitro phenotypic screening revealed compounds 3g, 3j, and 3m as promising candidates, with IC50 values of 6.09 ± 0.52, 2.75 ± 0.62, and 3.58 ± 0.25 µM, respectively, against intracellular amastigotes. All pyrazole derivatives have good oral bioavailability prediction. The structure-activity relationship (SAR) analysis revealed increased potency of 1-aryl-1H-pyrazole-imidazoline derivatives with the Br, Cl, and methyl substituents in the para-position. The 3m compound stands out for its trypanocidal efficacy in 3D microtissue, which mimics tissue microarchitecture and physiology, and abolishment of parasite recrudescence in vitro. Our findings encourage the progression of the promising candidate for preclinical in vivo studies.
AuthorsLorraine Martins Rocha Orlando, Guilherme Curty Lechuga, Leonardo da Silva Lara, Byanca Silva Ferreira, Cynthia Nathalia Pereira, Rafaela Corrêa Silva, Maurício Silva Dos Santos, Mirian Claudia S Pereira
JournalMolecules (Basel, Switzerland) (Molecules) Vol. 26 Issue 21 (Nov 08 2021) ISSN: 1420-3049 [Electronic] Switzerland
PMID34771151 (Publication Type: Journal Article)
Chemical References
  • Pyrazoles
  • Trypanocidal Agents
Topics
  • Cell Culture Techniques
  • Chagas Disease (drug therapy)
  • Humans
  • Models, Molecular
  • Parasitic Sensitivity Tests
  • Printing, Three-Dimensional
  • Pyrazoles (chemistry, pharmacology)
  • Trypanocidal Agents (chemistry, pharmacology)
  • Trypanosoma cruzi (drug effects)

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: