HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

Trace elements and the carotid plaque: the GOOD (Mg, Zn, Se), the UGLY (Fe, Cu), and the BAD (P, Ca)?

Abstract
Multiple epidemiological studies have suggested that industrialization and progressive urbanization should be considered one of the main factors responsible for the rising of atherosclerosis in the developing world. In this scenario, the role of trace metals in the insurgence and progression of atherosclerosis has not been clarified yet. In this paper, the specific role of selected trace elements (magnesium, zinc, selenium, iron, copper, phosphorus, and calcium) is described by focusing on the atherosclerotic prevention and pathogenesis plaque. For each element, the following data are reported: daily intake, serum levels, intra/extracellular distribution, major roles in physiology, main effects of high and low levels, specific roles in atherosclerosis, possible interactions with other trace elements, and possible influences on plaque development. For each trace element, the correlations between its levels and clinical severity and outcome of COVID-19 are discussed. Moreover, the role of matrix metalloproteinases, a family of zinc-dependent endopeptidases, as a new medical therapeutical approach to atherosclerosis is discussed. Data suggest that trace element status may influence both atherosclerosis insurgence and plaque evolution toward a stable or an unstable status. However, significant variability in the action of these traces is evident: some - including magnesium, zinc, and selenium - may have a protective role, whereas others, including iron and copper, probably have a multi-faceted and more complex role in the pathogenesis of the atherosclerotic plaque. Finally, calcium and phosphorus are implicated in the calcification of atherosclerotic plaques and in the progression of the plaque toward rupture and severe clinical complications. In particular, the role of calcium is debated. Focusing on the COVID-19 pandemia, optimized magnesium and zinc levels are indicated as important protective tools against a severe clinical course of the disease, often related to the ability of SARS-CoV-2 to cause a systemic inflammatory response, able to transform a stable plaque into an unstable one, with severe clinical complications.
AuthorsD Fanni, C Gerosa, V M Nurchi, J S Suri, V Nardi, T Congiu, P Coni, A Ravarino, G Cerrone, M Piras, F Cau, N G Kounis, A Balestrieri, Y Gibo, P Van Eyken, F Coghe, E Venanzi Rullo, R Taibi, G Orrù, G Faa, L Saba
JournalEuropean review for medical and pharmacological sciences (Eur Rev Med Pharmacol Sci) Vol. 25 Issue 10 Pg. 3772-3790 (05 2021) ISSN: 2284-0729 [Electronic] Italy
PMID34109586 (Publication Type: Journal Article)
Chemical References
  • Trace Elements
  • Phosphorus
  • Copper
  • Iron
  • Matrix Metalloproteinases
  • Selenium
  • Magnesium
  • Zinc
  • Calcium
Topics
  • Atherosclerosis (metabolism, pathology)
  • COVID-19 (pathology, virology)
  • Calcium (blood, metabolism)
  • Copper (blood, metabolism)
  • Humans
  • Iron (blood, metabolism)
  • Magnesium (blood, metabolism)
  • Matrix Metalloproteinases (metabolism)
  • Phosphorus (blood, metabolism)
  • Risk
  • SARS-CoV-2 (isolation & purification)
  • Selenium (blood, metabolism)
  • Severity of Illness Index
  • Trace Elements (blood, metabolism)
  • Zinc (blood, metabolism)

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: