HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

Distinct composition and metabolic functions of human gut microbiota are associated with cachexia in lung cancer patients.

Abstract
Cachexia is associated with decreased survival in cancer patients and has a prevalence of up to 80%. The etiology of cachexia is poorly understood, and limited treatment options exist. Here, we investigated the role of the human gut microbiome in cachexia by integrating shotgun metagenomics and plasma metabolomics of 31 lung cancer patients. The cachexia group showed significant differences in the gut microbial composition, functional pathways of the metagenome, and the related plasma metabolites compared to non-cachectic patients. Branched-chain amino acids (BCAAs), methylhistamine, and vitamins were significantly depleted in the plasma of cachexia patients, which was also reflected in the depletion of relevant gut microbiota functional pathways. The enrichment of BCAAs and 3-oxocholic acid in non-cachectic patients were positively correlated with gut microbial species Prevotella copri and Lactobacillus gasseri, respectively. Furthermore, the gut microbiota capacity for lipopolysaccharides biosynthesis was significantly enriched in cachectic patients. The involvement of the gut microbiome in cachexia was further observed in a high-performance machine learning model using solely gut microbial features. Our study demonstrates the links between cachectic host metabolism and specific gut microbial species and functions in a clinical setting, suggesting that the gut microbiota could have an influence on cachexia with possible therapeutic applications.
AuthorsYueqiong Ni, Zoltan Lohinai, Yoshitaro Heshiki, Balazs Dome, Judit Moldvay, Edit Dulka, Gabriella Galffy, Judit Berta, Glen J Weiss, Morten O A Sommer, Gianni Panagiotou
JournalThe ISME journal (ISME J) Vol. 15 Issue 11 Pg. 3207-3220 (11 2021) ISSN: 1751-7370 [Electronic] England
PMID34002024 (Publication Type: Journal Article, Research Support, Non-U.S. Gov't)
Copyright© 2021. The Author(s).
Topics
  • Cachexia
  • Gastrointestinal Microbiome
  • Humans
  • Lung Neoplasms (complications)
  • Prevotella

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: