HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

Persistent Regulation of Tumor Hypoxia Microenvironment via a Bioinspired Pt-Based Oxygen Nanogenerator for Multimodal Imaging-Guided Synergistic Phototherapy.

Abstract
Multifunctional nanoplatforms for imaging-guided synergistic antitumor treatment are highly desirable in biomedical applications. However, anticancer treatment is largely affected by the pre-existing hypoxic tumor microenvironment (TME), which not only causes the resistance of the tumors to photodynamic therapy (PDT), but also promotes tumorigenesis and tumor progression. Here, a continuous O2 self-enriched nanoplatform is constructed for multimodal imaging-guided synergistic phototherapy based on octahedral gold nanoshells (GNSs), which are constructed by a more facile and straightforward one-step method using platinum (Pt) nanozyme-decorated metal-organic frameworks (MOF) as the inner template. The Pt-decorated MOF@GNSs (PtMGs) are further functionalized with human serum albumin-chelated gadolinium (HSA-Gd, HGd) and loaded with indocyanine green (ICG) (ICG-PtMGs@HGd) to achieve a synergistic PDT/PTT effect and fluorescence (FL)/multispectral optoacoustic tomography (MSOT)/X-ray computed tomography (CT)/magnetic resonance (MR) imaging. The Pt-decorated nanoplatform endows remarkable catalase-like behavior and facilitates the continuous decomposition of the endogenous H2O2 into O2 to enhance the PDT effect under hypoxic TME. HSA modification enhances the biocompatibility and tumor-targeting ability of the nanocomposites. This TME-responsive and O2 self-supplement nanoparticle holds great potential as a multifunctional theranostic nanoplatform for the multimodal imaging-guided synergistic phototherapy of solid tumors.
AuthorsQing You, Kaiyue Zhang, Jingyi Liu, Changliang Liu, Huayi Wang, Mengting Wang, Siyuan Ye, Houqian Gao, Letian Lv, Chen Wang, Ling Zhu, Yanlian Yang
JournalAdvanced science (Weinheim, Baden-Wurttemberg, Germany) (Adv Sci (Weinh)) Vol. 7 Issue 17 Pg. 1903341 (Sep 2020) ISSN: 2198-3844 [Print] Germany
PMID32995114 (Publication Type: Journal Article)
Copyright© 2020 The Authors. Published by Wiley‐VCH GmbH.

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: