HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

Focused Ultrasound Stimulates ER Localized Mechanosensitive PANNEXIN-1 to Mediate Intracellular Calcium Release in Invasive Cancer Cells.

Abstract
Focused ultrasound (FUS) is a rapidly developing stimulus technology with the potential to uncover novel mechanosensory dependent cellular processes. Since it is non-invasive, it holds great promise for future therapeutic applications in patients used either alone or as a complement to boost existing treatments. For example, FUS stimulation causes invasive but not non-invasive cancer cell lines to exhibit marked activation of calcium signaling pathways. Here, we identify the membrane channel PANNEXIN1 (PANX1) as a mediator for activation of calcium signaling in invasive cancer cells. Knockdown of PANX1 decreases calcium signaling in invasive cells, while PANX1 overexpression enhances calcium elevations in non-invasive cancer cells. We demonstrate that FUS may directly stimulate mechanosensory PANX1 localized in endoplasmic reticulum to evoke calcium release from internal stores. This process does not depend on mechanosensory stimulus transduction through an intact cytoskeleton and does not depend on plasma membrane localized PANX1. Plasma membrane localized PANX1, however, plays a different role in mediating the spread of intercellular calcium waves via ATP release. Additionally, we show that FUS stimulation evokes cytokine/chemokine release from invasive cancer cells, suggesting that FUS could be an important new adjuvant treatment to improve cancer immunotherapy.
AuthorsNan Sook Lee, Chi Woo Yoon, Qing Wang, Sunho Moon, Kweon Mo Koo, Hayong Jung, Ruimin Chen, Laiming Jiang, Gengxi Lu, Antony Fernandez, Robert H Chow, Andrew C Weitz, Paul M Salvaterra, Fabien Pinaud, K Kirk Shung
JournalFrontiers in cell and developmental biology (Front Cell Dev Biol) Vol. 8 Pg. 504 ( 2020) ISSN: 2296-634X [Print] Switzerland
PMID32656213 (Publication Type: Journal Article)
CopyrightCopyright © 2020 Lee, Yoon, Wang, Moon, Koo, Jung, Chen, Jiang, Lu, Fernandez, Chow, Weitz, Salvaterra, Pinaud and Shung.

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: