HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

Computational modeling of novel quinazoline derivatives as potent epidermal growth factor receptor inhibitors.

Abstract
QSAR modelling on Thirty (34) novel quinazoline derivatives (EGFRWT inhibitors) as non-small cell lung cancer (NSCLC) agents was performed to develop a model with good predictive power that can predict the activities of newly designed compounds that have not been synthesised. The EGFRWT inhibitors were optimized at B3LYP/6-31G* level of theory using Density Functional Theory (DFT) method. Multi-Linear Regression using Genetic Function Approximation (GFA) method was adopted in building the models. The best one among the models built was selected and reported because it was found to have passed the minimum requirement for the assessment of QSAR models with the following assessment parameters: R2 of 0.965901, R2 adj of 0.893733, Qcv 2 of 0.940744, R2 test of 0.818991 and LOF of 0.076739. The high predicted power, reliability, robustness of the reported model was verified further by subjecting it to other assessments such VIF, Y-scrambling test and applicability domain. Molecular docking was also employed to elucidate the binding mode of some selected EGFRWT inhibitors against EGFR receptor (4ZAU) and found that molecule 17 have the highest binding affinity of -9.5 kcal/mol. It was observed that the ligand interacted with the receptor via hydrogen bond, hydrophobic bond, halogen bond, electrostatic bond and others which might me the reason why it has the highest binding affinity. Also, the ADME properties of these selected molecules were predicted and only one molecule (34) was found not orally bioavailable because it violated more than the permissible limit set by Lipinski's rule of five filters. This findings proposed a guidance for designing new potents EGFRWT inhibitors against their target enzyme.
AuthorsMuhammad Tukur Ibrahim, Adamu Uzairu, Sani Uba, Gideon Adamu Shallangwa
JournalHeliyon (Heliyon) Vol. 6 Issue 2 Pg. e03289 (Feb 2020) ISSN: 2405-8440 [Print] England
PMID32072038 (Publication Type: Journal Article)
Copyright© 2020 The Author(s).

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: