HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

Effects of fasting and food restriction on brown adipose tissue composition in normal and dystrophic hamsters.

Abstract
Fasting for 36-48 h or food restriction (30% reduction of daily food intake for 6 weeks) caused brown adipose tissue (BAT) atrophy in hamsters. Fasting-induced atrophy was characterized by reductions in tissue mass, DNA, protein, and thermogenin. By contrast, food restriction had no effect on tissue cellularity (DNA) but markedly reduced the tissue protein and thermogenin contents. The concentration of thermogenin in isolated mitochondria was unchanged by fasting or food restriction. Dystrophic hamsters had a reduced BAT mass when compared with weight-matched control hamsters. This resulted from a reduction in tissue cellularity since BAT DNA, protein and thermogenin contents were all reduced. The extent of binding of [3H]guanosine diphosphate to isolated mitochondria and their content of thermogenin were similar in normal and dystrophic hamsters. In response to cold exposure, as in normal hamsters, BAT of dystrophic hamsters grew and the tissue thermogenin increased, but the mitochondrial concentration of thermogenin did not change. In response to fasting, in contrast with normal hamsters, there was no significant reduction in BAT DNA in dystrophic animals and the loss of tissue protein was reduced. However, the relative changes in BAT composition during chronic food restriction were similar in normal and dystrophic animals. Thus, reduction in hamster BAT thermogenic capacity during food deprivation may occur by loss of cells and (or)reduction in the tissue protein and thermogenin contents. The extent of protein and (or) DNA loss may be dependent upon the original tissue mass and the severity of food deprivation.
AuthorsM Desautels, R A Dulos, H M Yuen
JournalCanadian journal of physiology and pharmacology (Can J Physiol Pharmacol) Vol. 64 Issue 7 Pg. 970-5 (Jul 1986) ISSN: 0008-4212 [Print] Canada
PMID3094924 (Publication Type: Journal Article, Research Support, Non-U.S. Gov't)
Chemical References
  • Carrier Proteins
  • Ion Channels
  • Membrane Proteins
  • Mitochondrial Proteins
  • Proteins
  • Uncoupling Protein 1
  • DNA
Topics
  • Adipose Tissue, Brown (analysis, pathology)
  • Animals
  • Atrophy
  • Carrier Proteins (analysis)
  • Cold Temperature
  • Cricetinae
  • DNA (analysis)
  • Food Deprivation (physiology)
  • Ion Channels
  • Male
  • Membrane Proteins
  • Mitochondrial Proteins
  • Muscular Dystrophy, Animal (metabolism, pathology)
  • Proteins (analysis)
  • Uncoupling Protein 1

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: