HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

Biochemical and cellular consequences of the antithrombin p.Met1? mutation identified in a severe thrombophilic family.

Abstract
Nature is always the best inspiration for basic research. A family with severe thrombosis and antithrombin deficiency, the strongest anticoagulant, carried a new mutation affecting the translation-start codon of SERPINC1, the gene encoding antithrombin. Expression of this variant in a eukaryotic cell system produced three different antithrombins. Two downstream methionines were used as alternative initiation codons, generating highly expressed small aglycosylated antithrombins with cytoplasmic localization. Wild-type antithrombin was generated by the use of the mutated AUU as initiation codon. Actually, any codon except for the three stop codons might be used to initiate translation in this strong Kozak context. We show unexpected consequences of natural mutations affecting translation-start codons. Downstream alternative initiation AUG codons may be used when the start codon is mutated, generating smaller molecules with potential different cell localization, biochemical features and unexplored consequences. Additionally, our data further support the use of other codons apart from AUG for initiation of translation in eukaryotes.
AuthorsJosé Navarro-Fernández, María Eugenia de la Morena-Barrio, Emma Martínez-Alonso, Ingunn Dybedal, Mara Toderici, Nataliya Bohdan, Antonia Miñano, Ketil Heimdal, Ulrich Abildgaard, José Ángel Martínez-Menárguez, Javier Corral, Vicente Vicente
JournalOncotarget (Oncotarget) Vol. 9 Issue 69 Pg. 33202-33214 (Sep 04 2018) ISSN: 1949-2553 [Electronic] United States
PMID30237862 (Publication Type: Journal Article)

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: