HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

Development of zwitterionic sulfobetaine block copolymer conjugation strategies for reduced platelet deposition in respiratory assist devices.

Abstract
Respiratory assist devices, that utilize ∼2 m2 of hollow fiber membranes (HFMs) to achieve desired gas transfer rates, have been limited in their adoption due to such blood biocompatibility limitations. This study reports two techniques for the functionalization and subsequent conjugation of zwitterionic sulfobetaine (SB) block copolymers to polymethylpentene (PMP) HFM surfaces with the intention of reducing thrombus formation in respiratory assist devices. Amine or hydroxyl functionalization of PMP HFMs (PMP-A or PMP-H) was accomplished using plasma-enhanced chemical vapor deposition. The generated functional groups were conjugated to low molecular weight SB block copolymers with N-hydroxysuccinimide ester or siloxane groups (SBNHS or SBNHSi) that were synthesized using reversible addition fragmentation chain transfer polymerization. The modified HFMs (PMP-A-SBNHS or PMP-H-SBNHSi) showed 80-95% reduction in platelet deposition from whole ovine blood, stability under the fluid shear of anticipated operating conditions, and uninhibited gas exchange performance relative to non-modified HFMs (PMP-C). Additionally, the functionalization and SBNHSi conjugation technique was shown to reduce platelet deposition on polycarbonate and poly(vinyl chloride), two other materials commonly found in extracorporeal circuits. The observed thromboresistance and stability of the SB modified surfaces, without degradation of HFM gas transfer performance, indicate that this approach is promising for longer term pre-clinical testing in respiratory assist devices and may ultimately allow for the reduction of anticoagulation levels in patients being supported for extended periods. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 106B: 2681-2692, 2018.
AuthorsAlexander D Malkin, Sang-Ho Ye, Evan J Lee, Xiguang Yang, Yang Zhu, Lara J Gamble, William J Federspiel, William R Wagner
JournalJournal of biomedical materials research. Part B, Applied biomaterials (J Biomed Mater Res B Appl Biomater) Vol. 106 Issue 7 Pg. 2681-2692 (10 2018) ISSN: 1552-4981 [Electronic] United States
PMID29424964 (Publication Type: Journal Article, Research Support, N.I.H., Extramural)
Copyright© 2018 Wiley Periodicals, Inc.
Chemical References
  • Coated Materials, Biocompatible
  • Membranes, Artificial
  • Polycarboxylate Cement
  • polycarbonate
  • Betaine
  • sulfobetaine
  • Polyvinyl Chloride
Topics
  • Animals
  • Betaine (analogs & derivatives, chemistry)
  • Blood Platelets (metabolism)
  • Coated Materials, Biocompatible (chemistry)
  • Membranes, Artificial
  • Platelet Adhesiveness
  • Polycarboxylate Cement (chemistry)
  • Polyvinyl Chloride (chemistry)
  • Sheep

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: