HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

Keap1 loss promotes Kras-driven lung cancer and results in dependence on glutaminolysis.

Abstract
Treating KRAS-mutant lung adenocarcinoma (LUAD) remains a major challenge in cancer treatment given the difficulties associated with directly inhibiting the KRAS oncoprotein. One approach to addressing this challenge is to define mutations that frequently co-occur with those in KRAS, which themselves may lead to therapeutic vulnerabilities in tumors. Approximately 20% of KRAS-mutant LUAD tumors carry loss-of-function mutations in the KEAP1 gene encoding Kelch-like ECH-associated protein 1 (refs. 2, 3, 4), a negative regulator of nuclear factor erythroid 2-like 2 (NFE2L2; hereafter NRF2), which is the master transcriptional regulator of the endogenous antioxidant response. The high frequency of mutations in KEAP1 suggests an important role for the oxidative stress response in lung tumorigenesis. Using a CRISPR-Cas9-based approach in a mouse model of KRAS-driven LUAD, we examined the effects of Keap1 loss in lung cancer progression. We show that loss of Keap1 hyperactivates NRF2 and promotes KRAS-driven LUAD in mice. Through a combination of CRISPR-Cas9-based genetic screening and metabolomic analyses, we show that Keap1- or Nrf2-mutant cancers are dependent on increased glutaminolysis, and this property can be therapeutically exploited through the pharmacological inhibition of glutaminase. Finally, we provide a rationale for stratification of human patients with lung cancer harboring KRAS/KEAP1- or KRAS/NRF2-mutant lung tumors as likely to respond to glutaminase inhibition.
AuthorsRodrigo Romero, Volkan I Sayin, Shawn M Davidson, Matthew R Bauer, Simranjit X Singh, Sarah E LeBoeuf, Triantafyllia R Karakousi, Donald C Ellis, Arjun Bhutkar, Francisco J Sánchez-Rivera, Lakshmipriya Subbaraj, Britney Martinez, Roderick T Bronson, Justin R Prigge, Edward E Schmidt, Craig J Thomas, Chandra Goparaju, Angela Davies, Igor Dolgalev, Adriana Heguy, Viola Allaj, John T Poirier, Andre L Moreira, Charles M Rudin, Harvey I Pass, Matthew G Vander Heiden, Tyler Jacks, Thales Papagiannakopoulos
JournalNature medicine (Nat Med) Vol. 23 Issue 11 Pg. 1362-1368 (Nov 2017) ISSN: 1546-170X [Electronic] United States
PMID28967920 (Publication Type: Journal Article)
Chemical References
  • KEAP1 protein, human
  • Kelch-Like ECH-Associated Protein 1
  • Glutamine
  • Glutaminase
Topics
  • Adenocarcinoma (genetics, metabolism, pathology)
  • Adenocarcinoma of Lung
  • Animals
  • Clustered Regularly Interspaced Short Palindromic Repeats
  • Genes, ras
  • Glutaminase (antagonists & inhibitors)
  • Glutamine (metabolism)
  • Humans
  • Hydrolysis
  • Kelch-Like ECH-Associated Protein 1 (genetics)
  • Lung Neoplasms (genetics, metabolism, pathology)
  • Mice

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: