HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

Interfacial Stacks of Polymeric Nanofilms on Soft Biological Surfaces that Release Multiple Agents.

Abstract
We report a general and facile method that permits the transfer (stacking) of multiple independently fabricated and nanoscopically thin polymeric films, each containing a distinct bioactive agent, onto soft biomedically relevant surfaces (e.g., collagen-based wound dressings). By using polyelectrolyte multilayer films (PEMs) formed from poly(allyl amine hydrochloride) and poly(acrylic acid) as representative polymeric nanofilms and micrometer-thick water-soluble poly(vinyl alcohol) sacrificial films to stack the PEMs, we demonstrate that it is possible to create stacked polymeric constructs containing multiple bioactive agents (e.g., antimicrobial and antibiofilm agents) on soft and chemically complex surfaces onto which PEMs cannot be routinely transferred by stamping. We illustrate the characteristics and merits of the approach by fabricating stacks of Ga3+ (antibiofilm agent)- and Ag+ (antimicrobial agent)-loaded PEMs as prototypical examples of agent-containing PEMs and demonstrate that the stacked PEMs incorporate precise loadings of the agents and provide flexibility in terms of tuning release rates. Specifically, we show that simultaneous release of Ga3+ and Ag+ from the stacked PEMs on collagen-based wound dressings can lead to synergistic effects on bacteria, killing and dispersing biofilms formed by Pseudomonas aeruginosa (two strains: ATCC 27853 and MPAO1) at sufficiently low loadings of agents such that cytotoxic effects on mammalian cells are avoided. The approach is general (a wide range of bioactive agents other than Ga3+ and Ag+ can be incorporated into PEMs), and the modular nature of the approach potentially allows end-user functionalization of soft biological surfaces for programmed release of multiple bioactive agents.
AuthorsMaggie Herron, Michael J Schurr, Christopher J Murphy, Jonathan F McAnulty, Charles J Czuprynski, Nicholas L Abbott
JournalACS applied materials & interfaces (ACS Appl Mater Interfaces) Vol. 8 Issue 40 Pg. 26541-26551 (Oct 12 2016) ISSN: 1944-8252 [Electronic] United States
PMID27579573 (Publication Type: Journal Article)

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: