HOMEPRODUCTSSERVICESCOMPANYCONTACTFAQResearchDictionaryPharmaMobileSign Up FREE or Login

Ag@Ag8W4O16 nanoroasted rice beads with photocatalytic, antibacterial and anticancer activity.

Abstract
Increasing resistance of pathogens and cancer cell line towards antibiotics and anticancer agents has caused serious health problems in the past decades. Due to these problems in recent years, researchers have tried to combine nanotechnology with material science to have intrinsic antimicrobial and anticancer activity. The metals and metal oxides were investigated with respect to their antimicrobial and anticancer effects towards bacteria and cancer cell line. In the present work metal@metal tungstate (Ag@Ag8W4O16 nanoroasted rice beads) is investigated for antibacterial activity against Escherichia coli and Staphylococcus aureus using Mueller-Hinton broth and the anticancer activity against B16F10 cell line was studied. Silver decorated silver tungstate (Ag@Ag8W4O16) was synthesized by the microwave irradiation method using Cetyl Trimethyl Ammonium Bromide (CTAB). Ag@Ag8W4O16 was characterized by using various spectroscopic techniques. The phase and crystalline nature were analyzed by using XRD. The morphological analysis was carried out using Field Emission Scanning Electron Microscopy (FE-SEM), and High Resolution Transmission Electron Microscopy (HR-TEM). Further, Fourier Transform Infrared Spectroscopy (FT-IR) and Raman spectral analysis were carried out in order to ascertain the presence of functional groups in Ag@Ag8W4O16. The optical property was investigated using Diffuse Reflectance Ultraviolet-Visible Spectroscopy (DRS-UV-Vis) and the band gap was found to be 3.08eV. Surface area of the synthesized Ag@Ag8W4O16 wasanalyzed by BET analysis and Ag@Ag8W4O16 was utilized for the degradation of organic dyes methylene blue and rhodamine B. The morphology of the Ag@Ag8W4O16 resembles roasted rice beads with breath and length in nm range. The oxidation state of tungsten (W) and silver (Ag) was investigated using X-ray photoelectron spectroscopy (XPS).
AuthorsMuthamizh Selvamani, Giribabu Krishnamoorthy, Manigandan Ramadoss, Praveen Kumar Sivakumar, Munusamy Settu, Suresh Ranganathan, Narayanan Vengidusamy
JournalMaterials science & engineering. C, Materials for biological applications (Mater Sci Eng C Mater Biol Appl) Vol. 60 Pg. 109-18 (Mar 1 2016) ISSN: 1873-0191 [Electronic] Netherlands
PMID26706513 (Publication Type: Journal Article)
CopyrightCopyright © 2015 Elsevier B.V. All rights reserved.

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research network!


Choose Username:
Email:
Password:
Verify Password: