HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

Nuclear Receptor-Like Structure and Interaction of Congenital Heart Disease-Associated Factors GATA4 and NKX2-5.

AbstractAIMS:
Transcription factor GATA4 is a dosage sensitive regulator of heart development and alterations in its level or activity lead to congenital heart disease (CHD). GATA4 has also been implicated in cardiac regeneration and repair. GATA4 action involves combinatorial interaction with other cofactors such as NKX2-5, another critical cardiac regulator whose mutations also cause CHD. Despite its critical importance to the heart and its evolutionary conservation across species, the structural basis of the GATA4-NKX2-5 interaction remains incompletely understood.
METHODS AND RESULTS:
A homology model was constructed and used to identify surface amino acids important for the interaction of GATA4 and NKX2-5. These residues were subjected to site-directed mutagenesis, and the mutant proteins were characterized for their ability to bind DNA and to physically and functionally interact with NKX2-5. The studies identify 5 highly conserved amino acids in the second zinc finger (N272, R283, Q274, K299) and its C-terminal extension (R319) that are critical for physical and functional interaction with the third alpha helix of NKX2-5 homeodomain. Integration of the experimental data with computational modeling suggests that the structural arrangement of the zinc finger-homeodomain resembles the architecture of the conserved DNA binding domain of nuclear receptors.
CONCLUSIONS:
The results provide novel insight into the structural basis for protein-protein interactions between two important classes of transcription factors. The model proposed will help to elucidate the molecular basis for disease causing mutations in GATA4 and NKX2-5 and may be relevant to other members of the GATA and NK classes of transcription factors.
AuthorsSini Kinnunen, Mika Välimäki, Marja Tölli, Gerd Wohlfahrt, Rami Darwich, Hiba Komati, Mona Nemer, Heikki Ruskoaho
JournalPloS one (PLoS One) Vol. 10 Issue 12 Pg. e0144145 ( 2015) ISSN: 1932-6203 [Electronic] United States
PMID26642209 (Publication Type: Journal Article, Research Support, Non-U.S. Gov't)
Chemical References
  • GATA4 Transcription Factor
  • Gata4 protein, mouse
  • Homeobox Protein Nkx-2.5
  • Homeodomain Proteins
  • Nkx2-5 protein, mouse
  • Receptors, Cytoplasmic and Nuclear
  • Transcription Factors
  • DNA
Topics
  • Animals
  • COS Cells
  • Chlorocebus aethiops
  • DNA (genetics, metabolism)
  • GATA4 Transcription Factor (genetics, metabolism)
  • Heart Defects, Congenital (genetics, metabolism)
  • Homeobox Protein Nkx-2.5
  • Homeodomain Proteins (genetics, metabolism)
  • Mice
  • Models, Biological
  • Mutation
  • Protein Binding
  • Protein Structure, Tertiary
  • Receptors, Cytoplasmic and Nuclear (genetics, metabolism)
  • Transcription Factors (genetics, metabolism)
  • Zinc Fingers

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: