HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

[Effects of resuscitation with different kinds of colloids on oxygen metabolism in swine during shock stage of burn injury].

AbstractOBJECTIVE:
To explore the effects of resuscitation with different kinds of colloids on oxygen metabolism of swine during shock stage of burn injury.
METHODS:
Eighteen Guangxi Bama miniature swine were inflicted with 40% TBSA full-thickness burn on the back. And then they were divided into succinylated gelatin group (S) , hydroxyethyl starch group (H), and allogeneic plasma group (A) according to the random number table, with 6 swine in each group. The fluid resuscitation was begun at post injury hour (PIH) 2. The colloids used in groups S, H, and A were respectively succinylated gelatin, 60 g/L hydroxyethyl starch 130/0.4, and allogeneic plasma. The blood pressure, urine volume, heart rate, and central venous pressure (CVP) were recorded before injury and at the first and second PIH 24. The volume of resuscitation fluid was recorded at the first and second PIH 24. The changes in oxygen delivery., oxygen consumption, oxygen extraction ratio and D-lactate were determined and calculated before injury and at PIH 4, 8, 24, and 48. Data were processed with analysis of variance of repeated measurement, one-way analysis of variance and LSD test.
RESULTS:
There were no statistically significant differences among the three groups in blood pressure, urine volume, heart rate, and CVP at each time point (with P values above 0. 05). There were no statistically significant differences in resuscitation fluid volume among the three groups at the first and second PIH 24 (with F values respectively 0. 239 and 2. 023, P values respectively 0. 790 and 0. 167). The oxygen consumption of swine in group S was (201 ± 38) L · min(-1) · m(-2) at PIH 48, which was significantly higher than that in group A [(150 ± 37) L · min(-1) · m(-2), P < 0.05], and the oxygen consumption was similar among the three groups at the rest time points (with P values above 0.05). The oxygen delivery of swine in group S was (484 ± 63) L · min(-1) · m(-2) at PIH 8, and it was significantly lower than that in group A [(652 ± 65) L(-1) min(-1) · m(-2), P < 0.01]. The oxygen delivery of swine in group S reached (903 ± 132) and (1,028 ± 98) L · min(-1) · m(-2) at PIH 24 and 48, respectively, and they were significantly higher than those in group A [(686 ± 72) and (720 ± 75) L · min(-1) · M(-2), with P values below 0.01]. Oxygen delivery in group H was similar to that of group A at each time point (with P values above 0.05). The oxygen extraction ratio in group S or group H was close to that of group A at each time point (with P values above 0.05). The D-lactate level in group S was (69 ± 9) mmol/L, and it was significantly higher than that in group A [(52 ± 4) mmol/L, P < 0.01] at PIH 48. The D-lactate level was similar among the three groups at the rest time points (with P values above 0.05).
CONCLUSIONS:
According to the changes in oxygen metabolism of swine during shock stage of burn injury resuscitated with different kinds of colloids, it is found that allogeneic plasma is better than artificial colloid, and 60 g/L hydroxyethyl starch 130/0.4 is superior to succinylated gelatin.
AuthorsShi Jianwu, Huang Wenxiang, Shi Xiaoli, Zhou Jianjun, Xing Nan, Chen Jiong
JournalZhonghua shao shang za zhi = Zhonghua shaoshang zazhi = Chinese journal of burns (Zhonghua Shao Shang Za Zhi) Vol. 31 Issue 3 Pg. 211-5 (Jun 2015) ISSN: 1009-2587 [Print] China
PMID26564569 (Publication Type: Journal Article)
Chemical References
  • Colloids
  • Hydroxyethyl Starch Derivatives
  • Oxygen
Topics
  • Animals
  • Blood Pressure
  • Burns
  • China
  • Colloids (administration & dosage, pharmacology)
  • Fluid Therapy
  • Hydroxyethyl Starch Derivatives
  • Oxygen (metabolism)
  • Resuscitation (methods)
  • Shock
  • Swine

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: