HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

Higher Neuromuscular Manifestations of Fatigue in Dynamic than Isometric Pull-Up Tasks in Rock Climbers.

Abstract
Neuromuscular assessment of rock climbers has been mainly focused on forearm muscles in the literature. We aimed to extend the body of knowledge investigating on two other upper limb muscles during sport-specific activities in nine male rock climbers. We assessed neuromuscular manifestations of fatigue recording surface electromyographic signals from brachioradialis and teres major muscles, using multi-channel electrode arrays. Participants performed two tasks until volitional exhaustion: a sequence of dynamic pull-ups and an isometric contraction sustaining the body at half-way of a pull-up (with the elbows flexed at 90°). The tasks were performed in randomized order with 10 minutes of rest in between. The normalized rate of change of muscle fiber conduction velocity was calculated as the index of fatigue. The time-to-task failure was significantly shorter in the dynamic (31 ±10 s) than isometric contraction (59 ±19 s). The rate of decrease of muscle fiber conduction velocity was found steeper in the dynamic than isometric task both in brachioradialis (isometric: -0.2 ±0.1%/s; dynamic: -1.2 ±0.6%/s) and teres major muscles (isometric: -0.4±0.3%/s; dynamic: -1.8±0.7%/s). The main finding was that a sequence of dynamic pull-ups lead to higher fatigue than sustaining the body weight in an isometric condition at half-way of a pull-up. Furthermore, we confirmed the possibility to properly record physiological CV estimates from two muscles, which had never been studied before in rock climbing, in highly dynamic contractions.
AuthorsGennaro Boccia, Luisa Pizzigalli, Donato Formicola, Marco Ivaldi, Alberto Rainoldi
JournalJournal of human kinetics (J Hum Kinet) Vol. 47 Pg. 31-9 (Sep 29 2015) ISSN: 1640-5544 [Print] Poland
PMID26557188 (Publication Type: Journal Article)

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: