HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

Necroptotic Cell Death Signaling and Execution Pathway: Lessons from Knockout Mice.

Abstract
Under stress conditions, cells in living tissue die by apoptosis or necrosis depending on the activation of the key molecules within a dying cell that either transduce cell survival or death signals that actively destroy the sentenced cell. Multiple extracellular (pH, heat, oxidants, and detergents) or intracellular (DNA damage and Ca(2+) overload) stress conditions trigger various types of the nuclear, endoplasmic reticulum (ER), cytoplasmatic, and mitochondrion-centered signaling events that allow cells to preserve the DNA integrity, protein folding, energetic, ionic and redox homeostasis, thus escaping from injury. Along the transition from reversible to irreversible injury, death signaling is highly heterogeneous and damaged cells may engage autophagy, apoptotic, or necrotic cell death programs. Studies on multiple double- and triple- knockout mice identified caspase-8, flip, and fadd genes as key regulators of embryonic lethality and inflammation. Caspase-8 has a critical role in pro- and antinecrotic signaling pathways leading to the activation of receptor interacting protein kinase 1 (RIPK1), RIPK3, and the mixed kinase domain-like (MLKL) for a convergent execution pathway of necroptosis or regulated necrosis. Here we outline the recent discoveries into how the necrotic cell death execution pathway is engaged in many physiological and pathological outcome based on genetic analysis of knockout mice.
AuthorsJosé Belizário, Luiz Vieira-Cordeiro, Sylvia Enns
JournalMediators of inflammation (Mediators Inflamm) Vol. 2015 Pg. 128076 ( 2015) ISSN: 1466-1861 [Electronic] United States
PMID26491219 (Publication Type: Journal Article, Research Support, Non-U.S. Gov't, Review)
Chemical References
  • Fadd protein, mouse
  • Fas-Associated Death Domain Protein
  • Reactive Oxygen Species
  • MLKL protein, mouse
  • Protein Kinases
  • Receptor-Interacting Protein Serine-Threonine Kinases
  • Caspase 8
Topics
  • Animals
  • Apoptosis (physiology)
  • Caspase 8 (genetics, metabolism)
  • DNA Damage (genetics, physiology)
  • Endoplasmic Reticulum (genetics, metabolism)
  • Fas-Associated Death Domain Protein (genetics, metabolism)
  • Humans
  • Mice
  • Mice, Knockout
  • Necrosis (genetics, physiopathology)
  • Protein Kinases (genetics, metabolism)
  • Reactive Oxygen Species (metabolism)
  • Receptor-Interacting Protein Serine-Threonine Kinases (genetics, metabolism)
  • Signal Transduction (genetics, physiology)

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: