HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

Native Knee Laxities at 0°, 45°, and 90° of Flexion and Their Relationship to the Goal of the Gap-Balancing Alignment Method of Total Knee Arthroplasty.

AbstractBACKGROUND:
Gap-balancing is an alignment method for total knee arthroplasty with the goal of creating uniform tension in the periarticular soft-tissue restraints and equal laxities throughout the arc of flexion. However, there is little evidence that achieving equal laxities prevents either overly tight or overly loose soft-tissue restraints after total knee arthroplasty. Accordingly, the purpose of the present study was to determine whether the laxities at 0°, 45°, and 90° of flexion are equal in the native knee.
METHODS:
Seven different laxities were measured at 0°, 45°, and 90° of flexion in ten fresh-frozen native cadaveric knees (with intact menisci, cartilage, and ligaments) by applying loads of ±5 Nm in varus-valgus rotation, ±3 Nm in internal-external rotation, 100 N in distraction, and ±45 N in anterior-posterior translation with use of a six-degrees-of-freedom load application system.
RESULTS:
The mean laxities (and standard deviations) at 45° of flexion were 1.7° ± 0.6° greater in varus, 0.9° ± 0.4° greater in valgus, 10.2° ± 2.7° greater in internal rotation, 10.1° ± 2.0° greater in external rotation, 1.7 ± 1.0 mm greater in distraction translation, and 3.3 ± 1.5 mm greater in anterior translation than those at 0° of flexion. The mean laxities at 90° of flexion were 2.5° ± 0.8° greater in varus, 1.0° ± 0.5° greater in valgus, 10.0° ± 4.6° greater in internal rotation, 10.1° ± 4.5° greater in external rotation, 1.8 ± 0.7 mm greater in distraction, and 1.6 ± 1.2 mm greater in anterior translation than those at 0° of flexion. The mean anterior translation at 90° of flexion was 1.7 ± 0.9 mm less than that at 45° of flexion.
CONCLUSIONS:
Because five of the seven laxities were at least 1.7° or 1.6 mm greater at both 45° and 90° of flexion than those at 0° of flexion, the laxities of the native knee measured in this study are unequal at these flexion angles and therefore do not support the goal of gap-balancing in total knee arthroplasty.
CLINICAL RELEVANCE:
One possible disadvantage of changing the native laxities at 45° and 90° of flexion to match those at 0° of flexion in a total knee arthroplasty is the overly tight soft-tissue restraints relative to those of the native knee, which patients may perceive as pain, stiffness, and/or limited flexion.
AuthorsJoshua D Roth, Stephen M Howell, Maury L Hull
JournalThe Journal of bone and joint surgery. American volume (J Bone Joint Surg Am) Vol. 97 Issue 20 Pg. 1678-84 (Oct 21 2015) ISSN: 1535-1386 [Electronic] United States
PMID26491132 (Publication Type: Journal Article)
CopyrightCopyright © 2015 by The Journal of Bone and Joint Surgery, Incorporated.
Topics
  • Aged
  • Aged, 80 and over
  • Anterior Cruciate Ligament (surgery)
  • Arthroplasty, Replacement, Knee (methods)
  • Biomechanical Phenomena (physiology)
  • Humans
  • Knee (surgery)
  • Knee Joint (surgery)
  • Middle Aged
  • Posterior Cruciate Ligament (surgery)
  • Range of Motion, Articular (physiology)
  • Rotation

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: