HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

Mannitol metabolism during pathogenic fungal-host interactions under stressed conditions.

Abstract
Numerous plants and fungi produce mannitol, which may serve as an osmolyte or metabolic store; furthermore, mannitol also acts as a powerful quencher of reactive oxygen species (ROS). Some phytopathogenic fungi use mannitol to stifle ROS-mediated plant resistance. Mannitol is essential in pathogenesis to balance cell reinforcements produced by both plants and animals. Mannitol likewise serves as a source of reducing power, managing coenzymes, and controlling cytoplasmic pH by going about as a sink or hotspot for protons. The metabolic pathways for mannitol biosynthesis and catabolism have been characterized in filamentous fungi by direct diminishment of fructose-6-phosphate into mannitol-1-phosphate including a mannitol-1-phosphate phosphatase catalyst. In plants mannitol is integrated from mannose-6-phosphate to mannitol-1-phosphate, which then dephosphorylates to mannitol. The enzyme mannitol dehydrogenase plays a key role in host-pathogen interactions and must be co-localized with pathogen-secreted mannitol to resist the infection.
AuthorsMukesh Meena, Vishal Prasad, Andleeb Zehra, Vijai K Gupta, Ram S Upadhyay
JournalFrontiers in microbiology (Front Microbiol) Vol. 6 Pg. 1019 ( 2015) ISSN: 1664-302X [Print] Switzerland
PMID26441941 (Publication Type: Journal Article, Review)

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: