HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

Increased sialylation as a phenomenon in accommodation of the parasitic nematode Trichinella spiralis (Owen, 1835) in skeletal muscle fibres.

Abstract
The biology of sialic acids has been an object of interest in many models of acquired and inherited skeletal muscle pathology. The present study focuses on the sialylation changes in mouse skeletal muscle after invasion by the parasitic nematode Trichinella spiralis (Owen, 1835). Asynchronous infection with T. spiralis was induced in mice that were sacrificed at different time points of the muscle phase of the disease. The amounts of free sialic acid, sialylated glycoproteins and total sialyltransferase activity were quantified. Histochemistry with lectins specific for sialic acid was performed in order to localise distribution of sialylated glycoconjugates and to clarify the type of linkage of the sialic acid residues on the carbohydrate chains. Elevated intracellular accumulation of α-2,3- and α-2,6-sialylated glycoconjugates was found only within the affected sarcoplasm of muscle fibres invaded by the parasite. The levels of free and protein-bound sialic acid were increased and the total sialyltransferase activity was also elevated in the skeletal muscle tissue of animals with trichinellosis. We suggest that the biological significance of this phenomenon might be associated with securing integrity of the newly formed nurse cell within the surrounding healthy skeletal muscle tissue. The increased sialylation might inhibit the affected muscle cell contractility through decreased membrane ion gating, helping the parasite accommodation process.
AuthorsRositsa Milcheva, Dimitar Ivanov, Ivan Iliev, Russy Russev, Svetlozara Petkova, Pavel Babal
JournalFolia parasitologica (Folia Parasitol (Praha)) Vol. 62 (Sep 07 2015) ISSN: 0015-5683 [Print] Czech Republic
PMID26373236 (Publication Type: Journal Article)

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: