HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

Application of Systems Theory in Longitudinal Studies on the Origin and Progression of Alzheimer's Disease.

Abstract
This chapter questions the prevailing "implicit" assumption that molecular mechanisms and the biological phenotype of dominantly inherited early-onset alzheimer's disease (EOAD) could serve as a linear model to study the pathogenesis of sporadic late-onset alzheimer's disease (LOAD). Now there is growing evidence to suggest that such reductionism may not be warranted; these suppositions are not adequate to explain the molecular complexities of LOAD. For example, the failure of some recent amyloid-centric clinical trials, which were largely based on the extrapolations from EOAD biological phenotypes to the molecular mechanisms in the pathogenesis of LOAD, might be due to such false assumptions. The distinct difference in the biology of LOAD and EOAD is underscored by the presence of EOAD cases without evidence of familial clustering or Mendelian transmission and, conversely, the discovery and frequent reports of such clustering and transmission patterns in LOAD cases. The primary thesis of this chapter is that a radically different way of thinking is required for comprehensive explanations regarding the distinct complexities in the molecular pathogenesis of inherited and sporadic forms of Alzheimer's disease (AD). We propose using longitudinal analytical methods and the paradigm of systems biology (using transcriptomics, proteomics, metabolomics, and lipidomics) to provide us a more comprehensive insight into the lifelong origin and progression of different molecular mechanisms and neurodegeneration. Such studies should aim to clarify the role of specific pathophysiological and signaling pathways such as neuroinflammation, altered lipid metabolism, apoptosis, oxidative stress, tau hyperphosphorylation, protein misfolding, tangle formation, and amyloidogenic cascade leading to overproduction and reduced clearance of aggregating amyloid-beta (Aβ) species. A more complete understanding of the distinct difference in molecular mechanisms, signaling pathways, as well as comparability of the various forms of AD is of paramount importance. The development of knowledge and technologies for early detection and characterization of the disease across all stages will improve the predictions regarding the course of the disease, prognosis, and response to treatment. No doubt such advances will have a significant impact on the clinical management of both EOAD and LOAD patients. The approach propped here, combining longitudinal studies with the systems biology paradigm, will create a more effective and comprehensive framework for development of prevention therapies in AD.
AuthorsSimone Lista, Zaven S Khachaturian, Dan Rujescu, Francesco Garaci, Bruno Dubois, Harald Hampel
JournalMethods in molecular biology (Clifton, N.J.) (Methods Mol Biol) Vol. 1303 Pg. 49-67 ( 2016) ISSN: 1940-6029 [Electronic] United States
PMID26235059 (Publication Type: Journal Article, Research Support, Non-U.S. Gov't, Review)
Topics
  • Alzheimer Disease (genetics, metabolism, pathology)
  • Disease Progression
  • Humans
  • Longitudinal Studies
  • Proteomics
  • Systems Biology (methods)

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: